10 research outputs found

    Prevention of Airborne Transmission of SARS-CoV-2 by UV-C Illumination of Airflow

    No full text
    SARS-CoV-2 is frequently transmitted by aerosol, and the sterilization of the virus in airflows has numerous potential applications. We evaluated a UV-C illuminator similar to what might be incorporated into tubing of a mechanical ventilator for its ability to block transmission of the airborne virus from infected to naïve hamsters. Hamsters protected by the UV system were consistently protected from infection, whereas non-protected hamsters uniformly became infected and displayed virus shedding and high burdens of virus in respiratory tissues. The efficiency and speed with which the virus in flowing air was inactivated using this system suggests several applications for mitigating transmission of this virus

    Glycoprofiling as a novel tool in serological assays of systemic sclerosis: A comparative study with three bioanalytical methods

    No full text
    Systemic sclerosis (SSc) is an autoimmune disease seriously affecting patient’s quality of life. The heterogeneity of the disease also means that identification and subsequent validation of biomarkers of the disease is quite challenging. A fully validated single biomarker for diagnosis, prognosis, disease activity and assessment of response to therapy is not yet available. The main aim of this study was to apply an alternative assay protocol to the immunoassay-based analysis of this disease by employment of sialic acid recognizing lectin Sambucus nigra agglutinin (SNA) to glycoprofile serum samples. To our best knowledge this is the first study describing direct lectin-based glycoprofiling of serum SSc samples. Three different analytical methods for glycoprofiling of serum samples relying on application of lectins are compared here from a bioanalytical point of view including traditional ELISA-like lectin-based method (ELLA), novel fluorescent lectin microarrays and ultrasensitive impedimetric lectin biosensors. Results obtained by all three bioanalytical methods consistently showed differences in the level of sialic acid present on glycoproteins, when serum from healthy people was compared to the one from patients having SSc. Thus, analysis of sialic acid content in human serum could be of a diagnostic value for future detection of SSc, but further work is needed to enhance selectivity of assays for example by glycoprofiling of a fraction of human serum enriched in antibodies for individual diagnostics.Slovak Scientific Grant Agency VEGA 2/0162/14 and from the Slovak Research and Development Agency APVV 0282-11 is acknowledged. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 311532 and this work has received funding from the European Union’s Seventh Framework Programme for research, Technological Development and Demonstration under grant agreement No. 317420. This publication is the result of the project implementation: Applied Research in the field of Industrial Biocatalysis, ITMS code: 26240220079 supported by the Research & Development Operational Programme funded by the ERDF. Research leading to these results was supported by BASF Slovakia

    Characterization of Site-Specific N-Glycosylation

    No full text
    Even if a consensus sequence has been identified for a posttranslational modification, the presence of such a sequence motif only indicates the possibility, not the certainty that the modification actually occurs. Proteins can be glycosylated on certain amino acid side chains, and these modifications are designated as C-, N-, and O-glycosylation. C-mannosylation occurs on Trp residues within a relatively loosely defined consensus motif. N-glycosylated species are modified at Asn residues of Asn-Xxx-Ser/Thr/Cys sequons (where Xxx can be any amino acid except proline). N-linked oligosaccharides share a common core structure of GlcNAc2Man3. In addition, an enzyme, peptide N-glycosidase F (PNGase F), removes most of the common N-linked carbohydrates unaltered from proteins while hydrolyzing the originally glycosylated Asn residue to Asp. O-glycosylation occurs at Ser, Thr, and Tyr residues, usually in sequence stretches rich in hydroxy-amino acids. O-glycosylation lacks a common core structure. Mammalian proteins have been reported bearing O-linked N-acetylgalactosamine, fucose, glucose, xylose, mannose, and corresponding elongated structures, as well as N-acetylglucosamine. Chemical methods are used to liberate these oligosaccharides because no enzyme would remove all the different O-linked carbohydrates. Characterization of both N- and O-glycosylation is complicated by the fact that the same positions within a population of protein molecules may feature an array of different carbohydrate structures, or remain unmodified. This site-specific heterogeneity may vary by species and tissue, and may also be affected by physiological changes. For addressing site-specific carbohydrate heterogeneity mass spectrometry has become the method of choice. Reversed-phase HPLC directly coupled with electrospray ionization mass spectrometry (LC/ESI-MS/MS) offers the best solution. Using a mass spectrometer as online detector not only assures the analysis of every component eluting (mass mapping), but also at the same time diagnostic carbohydrate ions can be generated by collisional activation that permits the selective and specific detection of glycopeptides. In addition, ESI-compatible alternative MS/MS techniques, electron-capture and electron-transfer dissociation, aid glycopeptide identification as well as modification site assignments
    corecore