68 research outputs found
Assessing Quality of Care of Elderly Patients Using the ACOVE Quality Indicator Set: A Systematic Review
Background: Care of the elderly is recognized as an increasingly important segment of health care. The Assessing Care Of Vulnerable Elderly (ACOVE) quality indicators (QIs) were developed to assess and improve the care of elderly patients. Objectives: The purpose of this review is to summarize studies that assess the quality of care using QIs from or based on ACOVE, in order to evaluate the state of quality of care for the reported conditions. Methods: We systematically searched MEDLINE, EMBASE and CINAHL for English-language studies indexed by February 2010. Articles were included if they used any ACOVE QIs, or adaptations thereof, for assessing the quality of care. Included studies were analyzed and relevant information was extracted. We summarized the results of these studies, and when possible generated an overall conclusion about the quality of care as measured by ACOVE for each condition, in various settings, and for each QI. Results: Seventeen studies were included with 278 QIs (original, adapted or newly developed). The quality scores showed large variation between and within conditions. Only a few conditions showed a stable pass rate range over multiple studies. Overall, pass rates for dementia (interquartile range (IQR): 11%-35%), depression (IQR: 27%-41%), osteoporosis (IQR: 34%-43%) and osteoarthritis (IQR: 29-41%) were notably low. Medication management and use (range: 81%-90%), hearing loss (77%-79%) and continuity of care (76%-80%) scored higher than other conditions. Out of the 278 QIs, 141 (50%) had mean pass rates below 50% and 121 QIs (44%) had pass rates above 50%. Twenty-three percent of the QIs scored above 75%, and 16% scored below 25%. Conclusions: Quality of care per condition varies markedly across studies. Although there has been much effort in improving the care for elderly patients in the last years, the reported quality of care according to the ACOVE indicators is still relatively lo
Estimating Dynamic Gait Stability Using Data from Non-aligned Inertial Sensors
Recently, two methods for quantifying the stability of a dynamical system have been applied to human locomotion: local stability (quantified by finite time maximum Lyapunov exponents, λs and λL) and orbital stability (quantified by maximum Floquet multipliers, MaxFm). In most studies published to date, data from optoelectronic measurement systems were used to calculate these measures. However, using wireless inertial sensors may be more practical as they are easier to use, also in ambulatory applications. While inertial sensors have been employed in some studies, it is unknown whether they lead to similar stability estimates as obtained with optoelectronic measurement systems. In the present study, we compared stability measures of human walking estimated from an optoelectronic measurement system with those calculated from an inertial sensor measurement system. Subjects walked on a treadmill at three different speeds while kinematics were recorded using both measurement systems. From the angular velocities and linear accelerations, λs, λL, and MaxFm were calculated. Both measurement systems showed the same effects of walking speed for all variables. Estimates from both measurement systems correlated high for λs and λL, (R > 0.85) but less strongly for MaxFm (R = 0.66). These results indicate that inertial sensors constitute a valid alternative for an optoelectronic measurement system when assessing dynamic stability in human locomotion, and may thus be used instead, which paves the way to studying gait stability during natural, everyday walking
Functional gait rehabilitation in elderly people following a fall-related hip fracture using a treadmill with visual context: design of a randomized controlled trial
Background: Walking requires gait adjustments in order to walk safely in continually changing environments. Gait adaptability is reduced in older adults, and (near) falls, fall-related hip fractures and fear of falling are common in this population. Most falls occur due to inaccurate foot placement relative to environmental hazards, such as obstacles. The C-Mill is an innovative, instrumented treadmill on which visual context (e. g., obstacles) is projected. The C-Mill is well suited to train foot positioning relative to environmental properties while concurrently utilizing the high-intensity practice benefits associated with conventional treadmill training. The present protocol was designed to examine the efficacy of C-Mill gait adaptability treadmill training for improving walking ability and reducing fall incidence and fear of falling relative to conventional treadmill training and usual care. We hypothesize that C-Mill gait adaptability treadmill training and conventional treadmill training result in better walking ability than usual care due to the enhanced training intensity, with superior effects for C-Mill gait adaptability treadmill training on gait adaptability aspects of walking given the concurrent focus on practicing step adjustments. Methods/design: The protocol describes a parallel group, single-blind, superiority randomized controlled trial with pre-tests, post-tests, retention-tests and follow-up. Hundred-twenty-six older adults with a recent fall-related hip fracture will be recruited from inpatient rehabilitation care and allocated to six weeks of C-Mill gait adaptability treadmill training (high-intensity, adaptive stepping), conventional treadmill training (high-intensity, repetitive stepping) or usual care physical therapy using block randomization, with allocation concealment by opaque sequentially numbered envelopes. Only data collectors are blind to group allocation. Study parameters related to walking ability will be assessed as primary outcome pre-training, post-training, after 4 weeks retention and 12 months follow-up. Secondary study parameters are measures related to fall incidence, fear of falling and general health. Discussion: The study will shed light on the relative importance of adaptive versus repetitive stepping and practice intensity for effective intervention programs directed at improving walking ability and reducing fall risk and fear of falling in older adults with a recent fall-related hip fracture, which may help reduce future fall-related health-care costs
Monoallelic Expression of Multiple Genes in the CNS
The inheritance pattern of a number of major genetic disorders suggests the possible involvement of genes that are expressed from one allele and silent on the other, but such genes are difficult to detect. Since DNA methylation in regulatory regions is often a mark of gene silencing, we modified existing microarray-based assays to detect both methylated and unmethylated DNA sequences in the same sample, a variation we term the MAUD assay. We probed a 65 Mb region of mouse Chr 7 for gene-associated sequences that show two distinct DNA methylation patterns in the mouse CNS. Selected genes were then tested for allele-specific expression in clonal neural stem cell lines derived from reciprocal F1 (C57BL/6×JF1) hybrid mice. In addition, using a separate approach, we directly analyzed allele-specific expression of a group of genes interspersed within clusters of OlfR genes, since the latter are subject to allelic exclusion. Altogether, of the 500 known genes in the chromosomal region surveyed, five show monoallelic expression, four identified by the MAUD assay (Agc1, p (pink-eyed dilution), P4ha3 and Thrsp), and one by its proximity to OlfR genes (Trim12). Thrsp (thyroid hormone responsive SPOT14 homolog) is expressed in hippocampus, but the human protein homolog, S14, has also been implicated in aggressive breast cancer. Monoallelic expression of the five genes is not coordinated at a chromosome-wide level, but rather regulated at individual loci. Taken together, our results suggest that at least 1% of previously untested genes are subject to allelic exclusion, and demonstrate a dual approach to expedite their identification
Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]
Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI+], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers
- …