267 research outputs found

    An Object-Oriented Framework for Robust Multivariate Analysis

    Get PDF
    Taking advantage of the S4 class system of the programming environment R, which facilitates the creation and maintenance of reusable and modular components, an object-oriented framework for robust multivariate analysis was developed. The framework resides in the packages robustbase and rrcov and includes an almost complete set of algorithms for computing robust multivariate location and scatter, various robust methods for principal component analysis as well as robust linear and quadratic discriminant analysis. The design of these methods follows common patterns which we call statistical design patterns in analogy to the design patterns widely used in software engineering. The application of the framework to data analysis as well as possible extensions by the development of new methods is demonstrated on examples which themselves are part of the package rrcov.

    An Object-Oriented Framework for Statistical Simulation: The R Package simFrame

    Get PDF
    Simulation studies are widely used by statisticians to gain insight into the quality of developed methods. Usually some guidelines regarding, e.g., simulation designs, contamination, missing data models or evaluation criteria are necessary in order to draw meaningful conclusions. The R package simFrame is an object-oriented framework for statistical simulation, which allows researchers to make use of a wide range of simulation designs with a minimal effort of programming. Its object-oriented implementation provides clear interfaces for extensions by the user. Since statistical simulation is an embarrassingly parallel process, the framework supports parallel computing to increase computational performance. Furthermore, an appropriate plot method is selected automatically depending on the structure of the simulation results. In this paper, the implementation of simFrame is discussed in great detail and the functionality of the framework is demonstrated in examples for different simulation designs.

    Robust sparse principal component analysis.

    Get PDF
    A method for principal component analysis is proposed that is sparse and robust at the same time. The sparsity delivers principal components that have loadings on a small number of variables, making them easier to interpret. The robustness makes the analysis resistant to outlying observations. The principal components correspond to directions that maximize a robust measure of the variance, with an additional penalty term to take sparseness into account. We propose an algorithm to compute the sparse and robust principal components. The method is applied on several real data examples, and diagnostic plots for detecting outliers and for selecting the degree of sparsity are provided. A simulation experiment studies the loss in statistical efficiency by requiring both robustness and sparsity.Dispersion measure; Projection-pursuit; Outliers; Variable selection;

    Robust Principal Component Analysis for Compositional Tables

    Get PDF
    A data table which is arranged according to two factors can often be considered as a compositional table. An example is the number of unemployed people, split according to gender and age classes. Analyzed as compositions, the relevant information would consist of ratios between different cells of such a table. This is particularly useful when analyzing several compositional tables jointly, where the absolute numbers are in very different ranges, e.g. if unemployment data are considered from different countries. Within the framework of the logratio methodology, compositional tables can be decomposed into independent and interactive parts, and orthonormal coordinates can be assigned to these parts. However, these coordinates usually require some prior knowledge about the data, and they are not easy to handle for exploring the relationships between the given factors. Here we propose a special choice of coordinates with a direct relation to centered logratio (clr) coefficients, which are particularly useful for an interpretation in terms of the original cells of the tables. With these coordinates, robust principal component analysis (PCA) is performed for dimension reduction, allowing to investigate the relationships between the factors. The link between orthonormal coordinates and clr coefficients enables to apply robust PCA, which would otherwise suffer from the singularity of clr coefficients.Comment: 20 pages, 2 figure

    Fitting multiplicative models by robust alternating regressions.

    Get PDF
    In this paper a robust approach for fitting multiplicative models is presented. Focus is on the factor analysis model, where we will estimate factor loadings and scores by a robust alternating regression algorithm. The approach is highly robust, and also works well when there are more variables than observations. The technique yields a robust biplot, depicting the interaction structure between individuals and variables. This biplot is not predetermined by outliers, which can be retrieved from the residual plot. Also provided is an accompanying robust R-2-plot to determine the appropriate number of factors. The approach is illustrated by real and artificial examples and compared with factor analysis based on robust covariance matrix estimators. The same estimation technique can fit models with both additive and multiplicative effects (FANOVA models) to two-way tables, thereby extending the median polish technique.Alternating regression; Approximation; Biplot; Covariance; Dispersion matrices; Effects; Estimator; Exploratory data analysis; Factor analysis; Factors; FANOVA; Least-squares; Matrix; Median polish; Model; Models; Outliers; Principal components; Robustness; Structure; Two-way table; Variables; Yield;

    Multivariate outlier explanations using Shapley values and Mahalanobis distances

    Full text link
    For the purpose of explaining multivariate outlyingness, it is shown that the squared Mahalanobis distance of an observation can be decomposed into outlyingness contributions originating from single variables. The decomposition is obtained using the Shapley value, a well-known concept from game theory that became popular in the context of Explainable AI. In addition to outlier explanation, this concept also relates to the recent formulation of cellwise outlyingness, where Shapley values can be employed to obtain variable contributions for outlying observations with respect to their "expected" position given the multivariate data structure. In combination with squared Mahalanobis distances, Shapley values can be calculated at a low numerical cost, making them even more attractive for outlier interpretation. Simulations and real-world data examples demonstrate the usefulness of these concepts
    • ā€¦
    corecore