63 research outputs found

    Human dose response relation for airborne exposure to Coxiella burnetii

    Get PDF
    Background: The recent outbreak of Q fever in the Netherlands between 2007 and 2009 is the largest recorded Q fever outbreak. Exposure to Coxiella burnetii may cause Q fever but the size of the population exposed during the outbreak remained uncertain as little is known of the infectivity of this pathogen. The quantification of the infectiousness and the corresponding response is necessary for assessing the risk to the population. Methods: A human challenge study was published in the 1950s but this study quantified the dose of C. burnetii in relative units. Data from a concurrent guinea pig challenge study were combined with a recent study in which guinea pigs were challenged with a similar aerosol route to quantify human exposure. Concentration estimates for C. burnetii are made jointly with estimates of the dose response parameters in a hierarchical Bayesian framework. Results: The dose for 50% infection (InfD50%) in human subjects is 1.18 bacteria (95% credible interval (CI) 0.76-40.2). The dose for 50% illness (IllD50) in challenged humans is 5.58 (95%CI 0.89-89.0) bacteria. The probability of a single viable C. burnetii causing infection in humans is 0.44 (95%CI 0.044-0.59) and for illness 0.12 (95%CI 0.0006-0.55). Conclusions: To our knowledge this is the first human dose–response model for C. burnetii. The estimated dose response relation demonstrates high infectivity in humans. In many published papers the proportion of infected individuals developing illness is reported to be 40%. Our model shows that the proportion of symptomatic infections may vary with the exposure dose. This implies that presence of these bacteria in the environment, even in small numbers, poses a serious health risk to the population

    Transmission of Novel Influenza A(H1N1) in Households with Post-Exposure Antiviral Prophylaxis

    Get PDF
    BACKGROUND: Despite impressive advances in our understanding of the biology of novel influenza A(H1N1) virus, little is as yet known about its transmission efficiency in close contact places such as households, schools, and workplaces. These are widely believed to be key in supporting propagating spread, and it is therefore of importance to assess the transmission levels of the virus in such settings. METHODOLOGY/PRINCIPAL FINDINGS: We estimate the transmissibility of novel influenza A(H1N1) in 47 households in the Netherlands using stochastic epidemic models. All households contained a laboratory confirmed index case, and antiviral drugs (oseltamivir) were given to both the index case and other households members within 24 hours after detection of the index case. Among the 109 household contacts there were 9 secondary infections in 7 households. The overall estimated secondary attack rate is low (0.075, 95%CI: 0.037-0.13). There is statistical evidence indicating that older persons are less susceptible to infection than younger persons (relative susceptibility of older persons: 0.11, 95%CI: 0.024-0.43. Notably, the secondary attack rate from an older to a younger person is 0.35 (95%CI: 0.14-0.61) when using an age classification of <or=12 versus >12 years, and 0.28 (95%CI: 0.12-0.50) when using an age classification of <or=18 versus >18 years. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the overall household transmission levels of novel influenza A(H1N1) in antiviral-treated households were low in the early stage of the epidemic. The relatively high rate of adult-to-child transmission indicates that control measures focused on this transmission route will be most effective in minimizing the total number of infections

    Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection

    Get PDF
    IMPORTANCE: SARS-CoV-2 infection is associated with persistent, relapsing, or new symptoms or other health effects occurring after acute infection, termed postacute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Characterizing PASC requires analysis of prospectively and uniformly collected data from diverse uninfected and infected individuals. OBJECTIVE: To develop a definition of PASC using self-reported symptoms and describe PASC frequencies across cohorts, vaccination status, and number of infections. DESIGN, SETTING, AND PARTICIPANTS: Prospective observational cohort study of adults with and without SARS-CoV-2 infection at 85 enrolling sites (hospitals, health centers, community organizations) located in 33 states plus Washington, DC, and Puerto Rico. Participants who were enrolled in the RECOVER adult cohort before April 10, 2023, completed a symptom survey 6 months or more after acute symptom onset or test date. Selection included population-based, volunteer, and convenience sampling. EXPOSURE: SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES: PASC and 44 participant-reported symptoms (with severity thresholds). RESULTS: A total of 9764 participants (89% SARS-CoV-2 infected; 71% female; 16% Hispanic/Latino; 15% non-Hispanic Black; median age, 47 years [IQR, 35-60]) met selection criteria. Adjusted odds ratios were 1.5 or greater (infected vs uninfected participants) for 37 symptoms. Symptoms contributing to PASC score included postexertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, palpitations, changes in sexual desire or capacity, loss of or change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements. Among 2231 participants first infected on or after December 1, 2021, and enrolled within 30 days of infection, 224 (10% [95% CI, 8.8%-11%]) were PASC positive at 6 months. CONCLUSIONS AND RELEVANCE: A definition of PASC was developed based on symptoms in a prospective cohort study. As a first step to providing a framework for other investigations, iterative refinement that further incorporates other clinical features is needed to support actionable definitions of PASC

    Researching COVID to Enhance Recovery (RECOVER) Adult Study Protocol: Rationale, Objectives, and Design

    Get PDF
    IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis. METHODS: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms. DISCUSSION: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options

    Climate, human behaviour or environment: individual-based modelling of Campylobacter seasonality and strategies to reduce disease burden

    Get PDF
    Acknowledgements: We thank colleagues within the Modelling, Evidence and Policy Research Group for useful feedback on this manuscript. Competing interests: The authors declare that they have no competing interests. Availability of data and materials: The R code used in this research is available at https://gitlab.com/rasanderson/campylobacter-microsimulation; it is platform independent, R version 3.3.0 and above. Funding: This research was funded by Medical Research Council Grant, Natural Environment Research Council, Economic and Social Research Council, Biotechnology and Biological Sciences Research Council, and the Food Standards Agency through the Environmental and Social Ecology of Human Infectious Diseases Initiative (Sources, seasonality, transmission and control: Campylobacter and human behaviour in a changing environment (ENIGMA); Grant Reference G1100799-1). PRH, SJO’B, and IRL are funded in part by the NIHR Health Protection Research Unit in Gastrointestinal Infection, at the University of Liverpool. PRH and IRL are also funded in part by the NIHR Health Protection Research Unit in Emergency Preparedness and Response, at King’s College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England.Peer reviewedPublisher PD

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Quantification of Salmonella Survival and Infection in an In vitro Model of the Human Intestinal Tract as Proxy for Foodborne Pathogens.

    Full text link
    Different techniques are available for assessing differences in virulence of bacterial foodborne pathogens. The use of animal models or human volunteers is not expedient for various reasons; the use of epidemiological data is often hampered by lack of crucial data. In this paper, we describe a static, sequential gastrointestinal tract (GIT) model system in which foodborne pathogens are exposed to simulated gastric and intestinal contents of the human digestive tract, including the interaction of pathogens with the intestinal epithelium. The system can be employed with any foodborne bacterial pathogens. Five strains of Salmonella Heidelberg and one strain of Salmonella Typhimurium were used to assess the robustness of the system. Four S. Heidelberg strains originated from an outbreak, the fifth S. Heidelberg strain and the S. Typhimurium strain originated from routine meat inspections. Data from plate counts, collected for determining the numbers of surviving bacteria in each stage, were used to quantify both the experimental uncertainty and biological variability of pathogen survival throughout the system. For this, a hierarchical Bayesian framework using Markov chain Monte Carlo (MCMC) was employed. The model system is able to distinguish serovars/strains for in vitro infectivity when accounting for within strain biological variability and experimental uncertainty

    Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents.

    Full text link
    The estimation of transmission parameters has been problematic for diseases that rely predominantly on transmission of pathogens from person to person through small infectious droplets. Age-specific transmission parameters determine how such respiratory agents will spread among different age groups in a human population. Estimating the values of these parameters is essential in planning an effective response to potentially devastating pandemics of smallpox or influenza and in designing control strategies for diseases such as measles or mumps. In this study, the authors estimated age-specific transmission parameters by augmenting infectious disease data with auxiliary data on self-reported numbers of conversational partners per person. They show that models that use transmission parameters based on these self-reported social contacts are better able to capture the observed patterns of infection of endemically circulating mumps, as well as observed patterns of spread of pandemic influenza. The estimated age-specific transmission parameters suggested that school-aged children and young adults will experience the highest incidence of infection and will contribute most to further spread of infections during the initial phase of an emerging respiratory-spread epidemic in a completely susceptible population. These findings have important implications for controlling future outbreaks of novel respiratory-spread infectious agents
    corecore