250 research outputs found

    Determination of Binding Mode: Intercalation

    Full text link
    A small molecule can be assumed to bind to DNA by intercalation between base pairs if it causes lengthening and unwinding of the DNA helix and undergoes changes in its spectral properties, such as DNAā€induced hypochromism and quenching of its UV absorbance. DNA lengthening and unwinding can be determined from the change in viscosity of a solution of linear or plasmid DNA, respectively. Intercalation of a ligand can also be seen as a reduction in the UV/visible absorbance of the intercalator, as well as a shift in the absorbance maximum.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143603/1/cpnc0801.pd

    Analysis of Oxidized DNA Fragments by Gel Electrophoresis

    Full text link
    Polyacrylamide gel electrophoresis is used to define and quantify products of deoxyribose oxidation in DNA, based on the unique electrophoretic mobility of DNA fragments possessing deoxyribose oxidation products on their termini. This approach allows initial estimation of the chemistry. Once the chemical identity of damage products has been confirmed, this technique allows sensitive quantitation of the various damage products.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143665/1/cpnc1008.pd

    A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation

    Get PDF
    Cells respond to environmental stressors and xenobiotic exposures using regulatory networks to control gene expression, and there is an emerging appreciation for the role of numerous postsynthetic chemical modifications of DNA, RNA, and proteins in controlling transcription and translation of the stress response. In this Perspective, we present a model for a new network that regulates the cellular response to xenobiotic exposures and other stresses in which stress-induced reprogramming of a system of dozens of post-transcriptional modifications on tRNA (tRNA) promotes selective translation of codon-biased mRNAs for critical response proteins. As a product of novel genomic and bioanalytical technologies, this model has strong parallels with the regulatory networks of DNA methylation in epigenetics and the variety of protein secondary modifications comprising signaling pathways and the histone code. When present at the tRNA wobble position, the modified ribonucleosides enhance the translation of mRNAs in which the cognate codons of the tRNAs are highly over-represented and that represent critical stress response proteins. A parallel system may also downregulate the translation of families of proteins. Notably, dysregulation of the tRNA methyltransferase enzymes in humans has also been implicated in cancer etiology, with demonstrated oncogenic and tumor-suppressive effects.National Institutes of Health (U.S.) (NIH ES017010)National Science Foundation (U.S.) (CHE-1308839)Singapore. National Research Foundatio

    More than an adaptor molecule: The emerging role of tRNA in cell signaling and disease

    Get PDF
    This FEBS Letters ā€˜FOCUS ONā€™ series of short reviews on tRNA captures the essence of the Barcelona BioMed Conference on Gene Translation: Fidelity and Quality Control, which was held at the Institut dā€™Estudis Catalans in Barcelona on December 2ā€“4, 2013. This meeting was powered by the dramatic resurgence of interest in tRNA biochemistry following the realization that tRNA is much more than a simple adaptor of the genetic code

    Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses

    Get PDF
    tRNA (tRNA) is a key molecule used for protein synthesis, with multiple points of stress-induced regulation that can include transcription, transcript processing, localization and ribonucleoside base modification. Enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and has the potential to influence specific anticodon-codon interactions and regulate translation. Notably, altered tRNA modification has been linked to mitochondrial diseases and cancer progression. In this review, specific to Eukaryotic systems, we discuss how recent systems-level analyses using a bioanalytical platform have revealed that there is extensive reprogramming of tRNA modifications in response to cellular stress and during cell cycle progression. Combined with genome-wide codon bias analytics and gene expression studies, a model emerges in which stress-induced reprogramming of tRNA drives the translational regulation of critical response proteins whose transcripts display a distinct codon bias. Termed Modification Tunable Transcripts (MoTTs), we define them as (1) transcripts that use specific degenerate codons and codon biases to encode critical stress response proteins, and (2) transcripts whose translation is influenced by changes in wobble base tRNA modification. In this review we note that the MoTTs translational model is also applicable to the process of stop-codon recoding for selenocysteine incorporation, as stop-codon recoding involves a selective codon bias and modified tRNA to decode selenocysteine during the translation of a key subset of oxidative stress response proteins. Further, we discuss how in addition to RNA modification analytics, the comprehensive characterization of translational regulation of specific transcripts requires a variety of tools, including high coverage codon-reporters, ribosome profiling and linked genomic and proteomic approaches. Together these tools will yield important new insights into the role of translational elongation in cell stress response.National Science Foundation (U.S.) (CHE-1308839)Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology Center. Infectious Disease Research Program

    tRNA modifications regulate translation during cellular stress

    Get PDF
    The regulation of gene expression in response to stress is an essential cellular protection mechanism. Recent advances in tRNA modification analysis and genome-based codon bias analytics have facilitated studies that lead to a novel model for translational control, with translation elongation dynamically regulated during stress responses. Stress-induced increases in specific anticodon wobble bases are required for the optimal translation of stress response transcripts that are significantly biased in the use of degenerate codons keyed to these modified tRNA bases. These findings led us to introduce the notion of tRNA modification tunable transcripts (MoTTs ā€“ transcripts whose translation is regulated by tRNA modifications), which are identifiable using genome-wide codon counting algorithms. In support of this general model of translational control of stress response, studies making use of detailed measures of translation, tRNA methyltransferase mutants, and computational and mass spectrometry approaches reveal that stress reprograms tRNA modifications to translationally regulate MoTTs linked to arginine and leucine codons, which helps cells survive insults by damaging agents. These studies highlight how tRNA methyltransferase activities and MoTTs are key components of the cellular stress response.National Science Foundation (U.S.) (CHE-1308839)Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology Center. Infectious Disease Research Program)David H. Koch Cancer Research Fund (Graduate Fellowship)Howard Hughes Medical Institute (International Student Research Fellowship

    One-electron Oxidation of a Pyrenyl Photosensitizer Covalently Attached to DNA and Competition Between its Further Oxidation and DNA Hole Injection

    Get PDF
    The photosensitized hole injection and guanine base damage phenomena have been investigated in the DNA sequence, 5ā€²-d(CATG[subscript 1] [superscript Py]CG[subscript 2]TCCTAC) with a site-specifically positioned pyrene-like (Py) benzo[a]pyrene 7,8-diol 9,10-epoxide-derived N[superscript 2]-guanine adduct (G[subscript 1] [superscript Py]). Generation of the Py radical cation and subsequent hole injection into the DNA strand by a 355 nm nanosecond laser pulses (āˆ¼4 mJ cm[superscript āˆ’2]) results in the transformation of G[subscript 1] [superscript Py] to the imidazolone derivative Iz[subscript 1] [superscript Py] and a novel G[subscript 1] [superscript Py*] photoproduct that has a mass larger by 16 Da (M+16) than the mass (M) of G[subscript 1] [superscript Py]. In addition, hole transfer and the irreversible oxidation of G[subscript 2], followed by the formation of Iz[subscript 2] was observed (Yun et al. [2007], J. Am. Chem. Soc., 129, 9321). Oxygen-18 and deuterium isotope labeling methods, in combination with an extensive analysis of the MS/MS fragmentation patterns of the individual dG[superscript Py*] nucleoside adduct and other data show that dG[superscript Py*] has an unusual structure with a ruptured cyclohexenyl ring with a carbonyl group at the rupture site and intact guanine and pyrenyl residues. The formation of this product competes with hole injection and thus diminishes the efficiency of oxidation of guanines within the oligonucleotide strand by at least 15% in comparison with that in the dG[superscript Py] nucleoside adduct.National Institutes of Health (U.S.) (Grant R01 CA110261

    Infection, inflammation and colon carcinogenesis

    Get PDF
    The importance of chronic inflammation as a risk factor for major cancers is well documented [1], and the inflammatory state is known to involve contributions of both adaptive and innate immune components. In a recent publication [2] we describe an experimental animal model in which infection, inflammation and cancer are mechanistically linked, and provide evidence that chemical mediators of the innate immune system and bacterial toxins both play key roles in driving colon carcinogenesis. In this model, epithelial injury caused by Helicobacter hepaticus infection enhances access of bacterially-associated products to pattern-recognition receptors located on surfaces of macrophages and dendritic cells. Receptor ligation leads to activation of transcription factors, including NF-kappa B, that regulate production of chemo-attractants for macrophages and neutrophils, recruitment of which is a hallmark of inflammation. These acute inflammatory events are re-enforced by expression of powerful inflammatory mediators such as TNF-Ī± and IL-2, which amplify acute inflammatory gene expression and enhance cell survival. If not properly extinguished, the innate inflammatory response is maintained and further amplified by activation of cell-mediated adaptive immunity

    Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number

    Get PDF
    Emerging evidence points to roles for tRNA modifications and tRNA abundance in cellular stress responses. While isolated instances of stress-induced tRNA degradation have been reported, we sought to assess the effects of stress on tRNA levels at a systems level. To this end, we developed a next-generation sequencing method that exploits the paucity of ribonucleoside modifications at the 3ā€²-end of tRNAs to quantify changes in all cellular tRNA molecules. Application of this tRNA-seq method to Saccharomyces cerevisiae identified all 76 expressed unique tRNA species out of 295 coded in the yeast genome, including all isoacceptor variants, with highly precise relative (fold-change) quantification of tRNAs. In studies of stress-induced changes in tRNA levels, we found that oxidation (H[subscript 2]O[subscript 2]) and alkylation (methylmethane sulfonate, MMS) stresses induced nearly identical patterns of up- and down-regulation for 58 tRNAs. However, 18 tRNAs showed opposing changes for the stresses, which parallels our observation of signature reprogramming of tRNA modifications caused by H[subscript 2]O[subscript 2] and MMS. Further, stress-induced degradation was limited to only a small proportion of a few tRNA species. With tRNA-seq applicable to any organism, these results suggest that translational control of stress response involves a contribution from tRNA abundance.National Institutes of Health (U.S.) (ES017010)National Institutes of Health (U.S.) (ES002109)National Science Foundation (U.S.) (CHE-1308839)Singapore-MIT Alliance for Research and Technolog
    • ā€¦
    corecore