66 research outputs found

    Ectrodactyly-ectodermal dysplasia-clefting syndrome presenting with bilateral choanal atresia and rectal stenosis

    Get PDF
    We present the case of a male who shortly after birth developed acute respiratory distress due to bilateral choanal atresia, following which he was found to have rectal stenosis. Genetic testing for CHARGE syndrome was negative, but whole genome sequencing identified heterozygosity for a pathogenic missense variant in TP63 (c.727C > T, p.(Arg243Trp). He also has partial cutaneous syndactyly of the third and fourth fingers of the right hand, and bilateral lacrimal duct stenosis/aplasia. A later maxillofacial review identified a palpable submucousal cleft and his scalp hair is blond and slightly sparse. Choanal atresia and rectal stenosis are recognized features of ectrodactyly-ectodermal dysplasia-clefting syndrome, but we believe this is the first report of a case presenting with these features in the absence of the cardinal features.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.published version, accepted version (12 month embargo), submitted versio

    Recontacting in clinical practice: an investigation of the views of healthcare professionals and clinical scientists in the United Kingdom

    No full text
    This article explores the views and experiences of healthcare professionals and clinical scientists in genetics about the existence of a duty and/or responsibility to recontact former patients when the genetic information relevant to their health, or that of family members, changes in a potentially important manner. It is based on N=30 semi-structured interviews guided by vignettes of recontacting scenarios. The sample included healthcare professionals in the United Kingdom from different medical specialties (clinical genetics, other ‘mainstream’ specialties now offering genetic testing), and scientists from regional genetics laboratories. While viewing recontacting as desirable under certain circumstances, most respondents expressed concerns about its feasibility within the current constraints of the National Health Service (NHS). The main barriers identified were insufficient resources (time, staff, and suitable IT infrastructures) and lack of clarity about role boundaries and responsibilities. All of these are further complicated by genetic testing being increasingly offered by mainstream specialties. Reaching a consensus about roles and responsibilities of clinical specialties with regard to recontacting former patients in the light of evolving genetic information, and about what resources and infrastructures would be needed, was generally seen as a pre-requisite to developing guidelines about recontact

    Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for DYNC1I1 exonic enhancers of DLX5/6 expression in humans

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this recordSplit-hand/foot malformation type 1 is an autosomal dominant condition with reduced penetrance and variable expression. We report three individuals from two families with split-hand/split-foot malformation (SHFM) in whom next generation sequencing was performed to investigate the cause of their phenotype.Wellcome Trus

    Adults with RRM2B-related mitochondrial disease have distinct clinical and molecular characteristics.

    Get PDF
    Mutations in the nuclear-encoded mitochondrial maintenance gene RRM2B are an important cause of familial mitochondrial disease in both adults and children and represent the third most common cause of multiple mitochondrial DNA deletions in adults, following POLG [polymerase (DNA directed), gamma] and PEO1 (now called C10ORF2, encoding the Twinkle helicase) mutations. However, the clinico-pathological and molecular features of adults with RRM2B-related disease have not been clearly defined. In this multicentre study of 26 adult patients from 22 independent families, including five additional cases published in the literature, we show that extra-ocular neurological complications are common in adults with genetically confirmed RRM2B mutations. We also demonstrate a clear correlation between the clinical phenotype and the underlying genetic defect. Myopathy was a prominent manifestation, followed by bulbar dysfunction and fatigue. Sensorineural hearing loss and gastrointestinal disturbance were also important findings. Severe multisystem neurological disease was associated with recessively inherited compound heterozygous mutations with a mean age of disease onset at 7 years. Dominantly inherited heterozygous mutations were associated with a milder predominantly myopathic phenotype with a later mean age of disease onset at 46 years. Skeletal muscle biopsies revealed subsarcolemmal accumulation of mitochondria and/or cytochrome c oxidase-deficient fibres. Multiple mitochondrial DNA deletions were universally present in patients who underwent a muscle biopsy. We identified 18 different heterozygous RRM2B mutations within our cohort of patients, including five novel mutations that have not previously been reported. Despite marked clinical overlap between the mitochondrial maintenance genes, key clinical features such as bulbar dysfunction, hearing loss and gastrointestinal disturbance should help prioritize genetic testing towards RRM2B analysis, and sequencing of the gene may preclude performance of a muscle biopsy

    Genetic contributions to visuospatial cognition in Williams syndrome: insights from two contrasting partial deletion patients

    Get PDF
    Background Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive. Methods We report on visuospatial cognition in two individuals with contrasting partial deletions in the WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted. Results Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JB’s atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion. Conclusions Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed

    SLC4A10 mutation causes a neurological disorder associated with impaired GABAergic transmission

    Get PDF
    SLC4A10 is a plasma-membrane bound transporter which utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of cerebrospinal fluid. Using next generation sequencing on samples from five unrelated families encompassing ten affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and typically severe intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorders including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioral abnormalities including delayed habituation and alterations in the 2-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggests an important role of SLC4A10 in the production of the cerebrospinal fluid. However, it is notable that despite diverse roles of the cerebrospinal fluid in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel characteristic neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties

    Primrose syndrome: Characterization of the phenotype in 42 patients

    Get PDF
    Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down-slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha-fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype-phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.published version, accepted version (12 month embargo) submitted versio

    Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior

    Get PDF
    Purpose We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. Methods We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. Results These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. Conclusion These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis

    Recontact in clinical practice: a survey of clinical genetics services in the United Kingdom

    Get PDF
    Purpose: To ascertain whether and how recontacting occurs in the United Kingdom. Method: A Web-based survey was administered online between October 2014 and July 2015. A link to the survey was circulated via an e-mail invitation to the clinical leads of the United Kingdom’s 23 clinical genetics services, with follow-up with senior clinical genetics staff. Results: The majority of UK services reported that they recontact patients and their family members. However, recontacting generally occurs in an ad hoc fashion when an unplanned event causes clinicians to review a file (a “trigger”). There are no standardized recontacting practices in the United Kingdom. More than half of the services were unsure whether formalized recontacting systems should be implemented. Some suggested greater patient involvement in the process of recontacting. Conclusion: This research suggests that a thorough evaluation of the efficacy and sustainability of potential recontacting systems within the National Health Service would be necessary before deciding whether and how to implement such a service or to create guidelines on best-practice models.This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text from the publisher's site.Publishe

    Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families.

    Get PDF
    Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes
    corecore