278 research outputs found

    Improved light extraction in the bioluminescent lantern of a Photuris firefly (Lampyridae)

    Full text link
    A common problem of light sources emitting from an homogeneous high-refractive index medium into air is the loss of photons by total internal reflection. Bioluminescent organisms, as well as artificial devices, have to face this problem. It is expected that life, with its mechanisms for evolution, would have selected appropriate optical structures to get around this problem, at least partially. The morphology of the lantern of a specific firefly in the genus Photuris has been examined. The optical properties of the different parts of this lantern have been modeled, in order to determine their positive or adverse effect with regard to the global light extraction. We conclude that the most efficient pieces of the lantern structure are the misfit of the external scales (which produce abrupt roughness in air) and the lowering of the refractive index at the level of the cluster of photocytes, where the bioluminescent production takes place.Comment: 13 pages, 11 figures, published in Optics Expres

    From homogeneous to fractal normal and tumorous microvascular networks in the brain

    Get PDF
    We studied normal and tumorous three-dimensional (3D) microvascular networks in primate and rat brain. Tissues were prepared following a new preparation technique intended for high-resolution synchrotron tomography of microvascular networks. The resulting 3D images with a spatial resolution of less than the minimum capillary diameter permit a complete description of the entire vascular network for volumes as large as tens of cubic millimeters. The structural properties of the vascular networks were investigated by several multiscale methods such as fractal and power- spectrum analysis. These investigations gave a new coherent picture of normal and pathological complex vascular structures. They showed that normal cortical vascular networks have scale- invariant fractal properties on a small scale from 1.4 lm up to 40 to 65 lm. Above this threshold, vascular networks can be considered as homogeneous. Tumor vascular networks show similar characteristics, but the validity range of the fractal regime extend to much larger spatial dimensions. These 3D results shed new light on previous two dimensional analyses giving for the first time a direct measurement of vascular modules associated with vessel-tissue surface exchange

    Direct 3D microscale imaging of C/C composites with computed holotomography

    Get PDF
    International audienceAs part of the modelling of CVI (Chemical Vapor Infiltration), one of the processing techniques of Carbon - Carbon composites, a better understanding of the relation between fiber architecture and transport properties is required. An excellent starting point for the pore-scale modeling of heat and gas transport is the acquisition of 3D images of the porous media through Computed Micro Tomography at various densification stages. Due to the low X-ray absorption rate of light materials such as carbon, a poor image contrast is obtained with absorption tomography. On the other hand, phase contrast imaging is readily feasible using the coherence properties of modern synchrotron beams. Holotomography has been performed on these materials and it provides quantitative density images where fibers and pyrocarbon matrix deposit are easily distinguishable. Such images are appropriate for the pore-scale computation of many effective transport properties

    Phase Contrast X-Ray Synchrotron Imaging

    Get PDF
    A significant portion of Mesozoic amber is fully opaque. Biological inclusions in such amber are invisible even after polishing, leading to potential bias in paleoecological and phylogenetic studies. Until now, studies using conventional X-ray microtomography focused on translucent or semi-opaque amber. In these cases, organisms of interest were visualized prior to X-ray analyses. It was recently demonstrated that propagation phase contrast X-ray synchrotron imaging techniques are powerful tools to access invisible inclusions in fully opaque amber. Here we describe an optimized synchrotron microradiographic protocol that allowed us to investigate efficiently and rapidly large amounts of opaque amber pieces from Charentes (southwestern France). Amber pieces were imaged with microradiography after immersion in water, which optimizes the visibility of inclusions. Determination is not accurate enough to allow precise phylogenetic studies, but provides preliminary data on biodiversity and ecotypes distribution; phase contrast microtomography remains necessary for precise determination. Because the organisms are generally much smaller than the amber pieces, we optimized local microtomography by using a continuous acquisition mode (sample moving during projection integration). As tomographic investigation of all inclusions is not practical, we suggest the use of a synchrotron for a microradiographic survey of opaque amber, coupled with microtomographic investigations of the most valuable organisms.Peer Reviewe

    Synchrotron X-Ray microtomography: a high resolution, fast and quantitative tool for rock characterization.

    No full text
    This article describes the current capabilities of the European Synchrotron radiation Facility (ESRF), and more particularly those of the ID19 beamline, devoted to imaging, for microtomography. Phase contrast, in situ and fast acquisitions, are emphasized, and examples illustrate the possibilities offered by the use of modern SR sources. RÉSUMÉ: Cet article expose les possibilités actuelles de l'Installation Européenne de Rayonnement Synchrotron (ESRF), et plus en particulier celles de la ligne ID19 dédiée à l' 'imagerie, en ce qui concerne la microtomographie. Les aspects contraste de phase, in situ et acquisition rapide sont soulignés. Des exemples illustrent les possibilités nouvelles

    Correlative Nanoscale 3D Imaging of Structure and Composition in Extended Objects

    Get PDF
    Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts. Aiming to overcome these limitations, we present a non-destructive and multiple-contrast imaging technique, using principles of X-ray laminography, thus generalizing tomography towards laterally extended objects. We retain advantages that are usually restricted to 2D microscopic imaging, such as scanning of large areas and subsequent zooming-in towards a region of interest at the highest possible resolution. Our technique permits correlating the 3D structure and the elemental distribution yielding a high sensitivity to variations of the electron density via coherent imaging and to local trace element quantification through X-ray fluorescence. We demonstrate the method by imaging a lithographic nanostructure and an aluminum alloy. Analyzing a biological system, we visualize in lung tissue the subcellular response to toxic stress after exposure to nanotubes. We show that most of the nanotubes are trapped inside alveolar macrophages, while a small portion of the nanotubes has crossed the barrier to the cellular space of the alveolar wall. In general, our method is non-destructive and can be combined with different sample environmental or loading conditions. We therefore anticipate that correlative X-ray nano-laminography will enable a variety of in situ and in operando 3D studies

    Experimental growth law for bubbles in a "wet" 3D liquid foam

    Full text link
    We used X-ray tomography to characterize the geometry of all bubbles in a liquid foam of average liquid fraction ϕl≈17\phi_l\approx 17 % and to follow their evolution, measuring the normalized growth rate G=V−1/3dVdt\mathcal{G}=V^{-{1/3}}\frac{dV} {dt} for 7000 bubbles. While G\mathcal{G} does not depend only on the number of faces of a bubble, its average over f−f-faced bubbles scales as Gf∼f−f0G_f\sim f-f_0 for large ffs at all times. We discuss the dispersion of G\mathcal{G} and the influence of VV on G\mathcal{G}.Comment: 10 pages, submitted to PR

    Registration of phase contrast images in propagation-based X-ray phase tomography

    Get PDF
    International audienceX-ray phase tomography aims at reconstructing the 3D electron density distribution of an object. It offers enhanced sensitivity compared to attenuation-based X-ray absorption tomography. In propagation-based methods, phase contrast is achieved by letting the beam propagate after interaction with the object. The phase shift is then retrieved at each projection angle, and subsequently used in tomographic reconstruction to obtain the refractive index decrement distribution, which is proportional to the electron density. Accurate phase retrieval is achieved by combining images at different propagation distances. For reconstructions of good quality, the phase-contrast images recorded at different distances need to be accurately aligned. In this work, we characterise the artefacts related to misalignment of the phase-contrast images, and investigate the use of different registration algorithms for aligning in-line phase-contrast images. The characterisation of artefacts is done by a simulation study and comparison with experimental data. Loss in resolution due to vibrations is found to be comparable to attenuation-based computed tomography. Further, it is shown that registration of phase-contrast images is nontrivial due to the difference in contrast between the different images, and the often periodical artefacts present in the phase-contrast images if multilayer X-ray optics are used. To address this, we compared two registration algorithms for aligning phase-contrast images acquired by magnified X-ray nanotomography: one based on cross-correlation and one based on mutual information. We found that the mutual information-based registration algorithm was more robust than a correlation-based method
    • …
    corecore