31 research outputs found

    Directional perfect absorption using deep subwavelength low-permittivity films

    Get PDF
    We experimentally demonstrate single beam directional perfect absorption (to within experimental accuracy) of p-polarized light in the near-infrared using unpatterned, deep subwavelength films of indium tin oxide (ITO) on Ag. The experimental perfect absorption occurs slightly above the epsilon-near-zero (ENZ) frequency of ITO, where the permittivity is less than 1 in magnitude. Remarkably, we obtain perfect absorption for films whose thickness is as low as similar to 1/50th of the operating free-space wavelength and whose single pass attenuation is only similar to 5%. We further derive simple analytical conditions for perfect absorption in the subwavelength-film regime that reveal the constraints that the thin layer permittivity must satisfy if perfect absorption is to be achieved. Then, to get a physical insight on the perfect absorption properties, we analyze the eigenmodes of the layered structure by computing both the real-frequency/complex-wavenumber and the complex-frequency/real-wavenumber modal dispersion diagrams. These analyses allow us to attribute the experimental perfect absorption condition to the crossover between bound and leaky behavior of one eigenmode of the layered structure. Both modal methods show that perfect absorption occurs at a frequency slightly larger than the ENZ frequency, in agreement with experimental results, and both methods predict a second perfect absorption condition at higher frequencies, attributed to another crossover between bound and leaky behavior of the same eigenmode. Our results greatly expand the list of materials that can be considered for use as ultrathin perfect absorbers and provide a methodology for the design of absorbing systems at any desired frequencyopen9

    Optical Efficiency of Image Sensor Pixels

    No full text
    this paper, however, we will focus on the OE of an image sensor pixel and not elaborate on its internal Q

    Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld

    No full text
    The steady increase in CMOS imager pixel count is built on the technology advances summarized as Moore’s law. Because imagers must interact with light, Moore’s Law impact differs from its impact on other integrated circuit applications. In this paper, we investigate how the trend towards smaller pixels interacts with two fundamental properties of light: photon noise and diffraction. Using simulations, we investigate three consequences of decreasing pixel size on image quality. First, we quantify the likelihood that photon noise will become visible and derive a noisevisibility contour map based on photometric exposure and pixel size. Second, we illustrate the consequence of diffraction and optical imperfections on image quality and analyze the implications of decreasing pixel size for aliasing in monochrome and color sensors. Third, we calculate how decreasing pixel size impacts the effective use of microlens arrays and derive curves for the concentration and redirection of light within the pixel

    Integrated color pixels in 0.18-�m complementary metal oxide semiconductor technology

    No full text
    Following the trend of increased integration in complementary metal oxide semiconductor (CMOS) image sensors, we have explored the potential of implementing light filters by using patterned metal layers placed on top of each pixel’s photodetector. To demonstrate wavelength selectivity, we designed and prototyped integrated color pixels in a standard 0.18-�m CMOS technology. Transmittance of several one-dimensional (1D) and twodimensional (2D) patterned metal layers was measured under various illumination conditions and found to exhibit wavelength selectivity in the visible range. We performed (a) wave optics simulations to predict the spectral responsivity of an uncovered reference pixel and (b) numerical electromagnetic simulations with a 2D finite-difference time-domain method to predict transmittances through 1D patterned metal layers. We found good agreement in both cases. Finally, we used simulations to predict the transmittance for more elaborat
    corecore