4 research outputs found

    Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review

    No full text
    Since time immemorial, plants and their compounds have been used in the treatment and management of various ailments. Currently, most of conventional drugs used for treatment of diseases are either directly or indirectly obtained from plant sources. The fungal group of plants is of significance, which not only provides food directly to man but also has been source of important drugs. For instance, commonly used antibiotics are derived from fungi. Fungi have also been utilized in the food industry, baking, and alcohol production. Apart from the economic importance of the microfungi, macrofungi have been utilized directly as food, which is usually got from their fruiting bodies, commonly known as mushrooms. Due to their richness in proteins, minerals, and other nutrients, mushrooms have also been associated with boosting the immune system. This makes mushrooms an important food source, especially for vegetarians and immunosuppressed individuals including the HIV/AIDS persons. In complementary and alternative medicines (CAMs), mushrooms are increasingly being accepted for treatment of various diseases. Mushrooms have been shown to have the ability to stimulate the immune system, modulate humoral and cellular immunity, and potentiate antimutagenic and antitumorigenic activity, as well as rejuvenating the immune system weakened by radiotherapy and chemotherapy in cancer treatment. This potential of mushrooms, therefore, qualifies them as candidates for immunomodulation and immunotherapy in cancer and other diseases’ treatment. However, a critical review on mushroom’s immune modulating potential in cancer has not been sufficiently addressed. This review puts forward insights into the immune activities of mushroom associated with anticancer activities

    The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice

    No full text
    Abstract Background The increasing use of complementary and alternative medicine (CAM) has kindled the need for scientific evaluation of the mechanism of action of CAMs. Although, licorice, a common ingredient in many Traditional Chinese medicine (TCM) has attracted great attention for its antitumor and immunomodulatory activities, the mechanism of action of its polysaccharides is still unclear. Here we report the immunomodulatory activity of licorice polysaccharides in vivo. Methods The differential anticancer activities of licorice polysaccharides by tumorigenesis and immunomodulation was evaluated in vivo. Six weeks old, 120 CT-26 tumor bearing BALB/c mice, weighing 20 ± 2 g were used. They were randomly divided into six groups, three groups receiving high molecular weight (fraction A), low molecular weight (fraction B) polysaccharides and crude extract (fraction C); positive, negative and normal groups receiving cytoxin, saline and normal diet respectively. Weight of mice and tumors was determined and tumorigenicity assay calculated to determine the anticancer effects. Immunomodulatory potential was determined by immune organ indices, immune cell population and serum cytokine levels using immune organ weight and index, flow cytometry and cytokine/chemokine bead panel kit respectively. Results Licorice polysaccharides exhibited immunomodulatory activities in CT 26 tumor bearing BALB/c mice. The polysaccharides significantly suppressed tumor growth and increased immune organ index. Furthermore, the immunomodulatory effect was evident with activation of CD4+ and CD8+ immune cells population. The polysaccharides also affected the production of various cytokines, by increasing IL 2, IL 6, IL 7 levels and a decreasing TNFα levels. Conclusion In summary, licorice polysaccharide especially of low molecular weight exhibit anticancer and immunomodulatory activities by suppressing tumor growth and improving general health of mice. They also augment the thymus/spleen index and population of T lymphocytes. Furthermore, the polysaccharides enhance the levels of serum antitumor cytokines, IL 2, IL 6 and IL 7 while decreasing pro-tumor cytokine TNFα
    corecore