130 research outputs found
Diverse pollination systems of the twin-spurred orchid genus Satyrium in African grasslands
The large terrestrial orchid genus Satyrium underwent evolutionary radiations in the Cape floral region and the grasslands of southern and eastern Africa. These radiations were accompanied by tremendous diversification of the unusual twin-spurred flowers that characterize the genus, but pollination data required to interpret these patterns of floral evolution have been lacking for grassland species in the genus. Here we document pollinators, nectar properties, and levels of pollination success for 11 grassland Satyrium species in southern and south-central Africa. Pollinators of these species include bees, beetles, butterflies, hawkmoths, noctuid moths, long-proboscid flies, and sunbirds. Most species appear to be specialized for pollination by one functional pollinator group. Long-proboscid fly pollination systems are reported for the first time in Satyrium (in S. macrophyllum and a high-altitude form of S. neglectum). Floral morphology, especially spur length and rostellum structure, differs markedly among plants with different pollinators, while nectar volume, concentration, and sugar composition are fairly uniform across species. Most taxa exhibited high levels of pollination success (>50% of flowers pollinated), a trend that can be attributed to the presence of nectar in the twin spurs
Gene expression analysis of peripheral cells for subclassification of pediatric inflammatory bowel disease in remission
Objective: In current clinical practice, optimal treatment of inflammatory bowel disease (IBD) aims at the induction and maintenance of clinical remission. Clinical remission is apparent when laboratory markers of inflammation are normal and clinical symptoms are absent. However, sub-clinical inflammation can still be present. A detailed analysis of the immune status during this inactive state of disease may provide a useful tool to categorize patients with clinical remission into subsets with variable states of immune activation. Design: By using Affymetrix GeneChips, we analysed RNA gene expression profiles of peripheral blood leukocytes from pediatric IBD patients in clinical remission and controls. We performed (un)supervised clustering analysis of IBD-associated genes and applied Ingenuity® pathway software to identify specific molecular profiles between patients. Results: Pediatric IBD patients with disease in clinical remission display heterogeneously distributed gene expression profiles that are significantly distinct from controls. We identified three clusters of IBD patients, each displaying specific expression profiles of IBD-associated genes. Conclusion: The expression of immune- and IBD-associated genes in peripheral blood leukocytes from pediatric IBD patients in clinical remission was different from healthy controls, indicating that sub-clinical immune mechanisms are still active during remission. As such, RNA profiling of peripheral blood may allow for non-invasive patient subclassification and new perspectives in treatment regimes of IBD patients in the future
The effect of methoxychlor on periphyton under natural conditions
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47980/1/128_2005_Article_BF01683435.pd
Recommended from our members
Microscopic Controls on the Desorption/Dissolution of Sorbed U(VI) and Their Influence on Reactive Transport
A sizable groundwater U plume exists in Hanford's 300 A resulting from the disposal of fuel rod dissolution wastes containing Al, Cu, and U to the vadose zone. This project is studying U-contaminated samples collected along a flow path from the waste source to the Columbia River. Three primary objectives are being pursued: (1) To develop microscopic models for U desorption/adsorption in sediments along the flow path including both geochemical reaction and diffusive mass transport processes. (2) To parameterize the microscopic models with appropriate laboratory measurements and data within context of a dual continuum, reactive transport model (DCM). (3) To apply the parameterized DCM to laboratory columns of different size and sediment texture for testing of scaling hypotheses
Region-specific Foxp2 deletions in cortex, striatum or cerebellum cannot explain vocalization deficits observed in spontaneous global knockouts
FOXP2 has been identified as a gene related to speech in humans, based on rare mutations that yield significant impairments in speech at the level of both motor performance and language comprehension. Disruptions of the murine orthologue Foxp2 in mouse pups have been shown to interfere with production of ultrasonic vocalizations (USVs). However, it remains unclear which structures are responsible for these deficits. Here, we show that conditional knockout mice with selective Foxp2 deletions targeting the cerebral cortex, striatum or cerebellum, three key sites of motor control with robust neural gene expression, do not recapture the profile of pup USV deficits observed in mice with global disruptions of this gene. Moreover, we observed that global Foxp2 knockout pups show substantive reductions in USV production as well as an overproduction of short broadband noise “
Diverse pollination systems of the twin-spurred orchid genus Satyrium in African grasslands
The large terrestrial orchid genus Satyrium underwent evolutionary radiations in the Cape floral region and the grasslands of southern and eastern Africa. These radiations were accompanied by tremendous diversification of the unusual twin-spurred flowers that characterize the genus, but pollination data required to interpret these patterns of floral evolution have been lacking for grassland species in the genus. Here we document pollinators, nectar properties, and levels of pollination success for 11 grassland Satyrium species in southern and south-central Africa. Pollinators of these species include bees, beetles, butterflies, hawkmoths, noctuid moths, long-proboscid flies, and sunbirds. Most species appear to be specialized for pollination by one functional pollinator group. Long-proboscid fly pollination systems are reported for the first time in Satyrium (in S. macrophyllum and a high-altitude form of S. neglectum). Floral morphology, especially spur length and rostellum structure, differs markedly among plants with different pollinators, while nectar volume, concentration, and sugar composition are fairly uniform across species. Most taxa exhibited high levels of pollination success (>50% of flowers pollinated), a trend that can be attributed to the presence of nectar in the twin spurs
Glissades Are Altered by Lesions to the Oculomotor Vermis but Not by Saccadic Adaptation
Saccadic eye movements enable fast and precise scanning of the visual field, which is partially controlled by the posterior cerebellar vermis. Textbook saccades have a straight trajectory and a unimodal velocity profile, and hence have well-defined epochs of start and end. However, in practice only a fraction of saccades matches this description. One way in which a saccade can deviate from its trajectory is the presence of an overshoot or undershoot at the end of a saccadic eye movement just before fixation. This additional movement, known as a glissade, is regarded as a motor command error and was characterized decades ago but was almost never studied. Using rhesus macaques, we investigated the properties of glissades and changes to glissade kinematics following cerebellar lesions. Additionally, in monkeys with an intact cerebellum, we investigated whether the glissade amplitude can be modulated using multiple adaptation paradigms. Our results show that saccade kinematics are altered by the presence of a glissade, and that glissades do not appear to have any adaptive function as they do not bring the eye closer to the target. Quantification of these results establishes a detailed description of glissades. Further, we show that lesions to the posterior cerebellum have a deleterious effect on both saccade and glissade properties, which recovers over time. Finally, the saccadic adaptation experiments reveal that glissades cannot be modulated by this training paradigm. Together our work offers a functional study of glissades and provides new insight into the cerebellar involvement in this type of motor error
AMPAR Auxiliary Protein SHISA6 Facilitates Purkinje Cell Synaptic Excitability and Procedural Memory Formation
The majority of excitatory postsynaptic currents in the brain are gated through AMPA-type glutamate receptors, the kinetics and trafficking of which can be modulated by auxiliary proteins. It remains to be elucidated whether and how auxiliary proteins can modulate synaptic function to contribute to procedural memory formation. In this study, we report that the AMPA-type glutamate receptor (AMPAR) auxiliary protein SHISA6 (CKAMP52) is expressed in cerebellar Purkinje cells, where it co-localizes with GluA2-containing AMPARs. The absence of SHISA6 in Purkinje cells results in severe impairments in the adaptation of the vestibulo-ocular reflex and eyeblink conditioning. The physiological abnormalities include decreased presence of AMPARs in synaptosomes, impaired excitatory transmission, increased deactivation of AMPA receptors, and reduced induction of long-term potentiation at Purkinje cell synapses. Our data indicate that Purkinje cells require SHISA6-dependent modification of AMPAR function in order to facilitate cerebellar, procedural memory formation.Peter et al. show that the SHISA6 protein modulates the synaptic function of Purkinje cells in mice. In the absence of SHISA6, memory formation during classical eyeblink conditioning and eye movement adaptations is severely impaired as a result of a major synaptic excitability phenotype in Purkinje cells
Differential effects of Foxp2 disruption in distinct motor circuits
Disruptions of the _FOXP2_ gene cause a speech and language disorder involving difficulties in sequencing orofacial movements. FOXP2 is expressed in cortico-striatal and cortico-cerebellar circuits important for fine motor skills, and affected individuals show abnormalities in these brain regions. We selectively disrupted _Foxp2_ in the cerebellar Purkinje cells, striatum or cortex of mice and assessed the effects on skilled motor behaviour using an operant lever-pressing task. Foxp2 loss in each region impacted behaviour differently, with striatal and Purkinje cell disruptions affecting the variability and the speed of lever-press sequences, respectively. Mice lacking Foxp2 in Purkinje cells showed a prominent phenotype involving slowed lever pressing as well as deficits in skilled locomotion. In vivo recordings from Purkinje cells uncovered an increased simple spike firing rate and decreased modulation of firing during limb movements. This was caused by increased intrinsic excitability rather than changes in excitatory or inhibitory inputs. Our findings show that Foxp2 can modulate different aspects of motor behaviour in distinct brain regions, and uncover an unknown role for Foxp2 in the modulation of Purkinje cel
- …