450 research outputs found

    3D-OSEM and FP-CIT SPECT quantification: benefit for studies with a high radius of rotation?

    Get PDF
    Objectives Dopamine transporter imaging with single-photon emission computed tomography (SPECT) is a valuable tool for both clinical routine and research studies. Recently, it was found that the image quality could be improved by introduction of the three-dimensional ordered subset expectation maximization (3D-OSEM) reconstruction algorithm, which provides resolution recovery. The aim of this study was to systematically evaluate the potential benefits of 3D-OSEM in comparison with 2D-OSEM under critical imaging conditions, for example, scans with a high radius of rotation.Materials and methods Monte Carlo simulation scans of a digital brain phantom with various disease states and different radii of rotation ranging from 13 to 30 cm were reconstructed with both 2D-OSEM and 3D-OSEM algorithms. Specific striatal binding and putamen-to-caudate ratios were determined and compared with true values in the phantom.Results The percentage recovery of true striatal binding was similar between both reconstruction algorithms at the minimum rotational radius; however, at the maximum rotational radius, it decreased from 53 to 43% for 3D-OSEM and from 52 to 26% for 2D-OSEM. 3D-OSEM matched the true putamen-to-caudate ratios more closely than did 2D-OSEM in scans with high SPECT rotation radii.Conclusion 3D-OSEM offers a promising image quality gain. It outperforms 2D-OSEM, particularly in studies with limited resolutions (such as scans acquired with a high radius of rotation) but does not improve the accuracy of the putamen-to-caudate ratios. Whether the benefits of better recovery in studies with higher radii of rotation could potentially increase the diagnostic power of dopamine transporter SPECT in patients with borderline striatal radiotracer binding, however, needs to be further examined

    Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    Get PDF
    Background: Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Methods: Based on different assumptions for alpha/beta, gamma 50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Results: Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high gamma 50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Discussion: Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than intuitively expected. Only under the assumption of high detection rates and low initial TCP values the TCP gain has been shown to be relevant. Conclusions: Based on the employed assumptions, specific dose escalation to choline PET positive areas within the prostate may increase the local control rates. Due to the lack of exact PET sensitivity and prostate alpha/beta parameter, no firm conclusions can be made. Small variations may completely abrogate the clinical benefit of a SIB based on choline PET imaging

    Cerebrospinal Fluid Tau Protein Levels and F-18-Fluorodeoxyglucose Positron Emission Tomography in the Differential Diagnosis of Alzheimer's Disease

    Get PDF
    Aims: In this study, we aimed to compare cerebrospinal fluid (CSF) levels of total tau (t-tau), phosphorylated tau (p-tau(181)) and positron emission tomography with F-18-fluorodeoxyglucose (FDG-PET) in the differential diagnosis of Alzheimer's disease (AD) under clinical conditions. Method: In a cross-sectional, blinded, single-center study, we examined a sample of 75 unselected memory clinic patients with clinical diagnoses of dementia of Alzheimer type (DAT; n = 24), amnestic mild cognitive impairment (MCI; n = 16), other dementias (n = 13) and nondemented controls (n = 22). Discriminative accuracy, sensitivity and specificity were calculated and compared using ROC analyses. Results: p-tau(181) and FDG-PET were comparable in separating DAT from controls (sensitivity: 67 vs. 79%; specificity: 91% for both) and patients with other dementias (sensitivity: 71 vs. 79%; specificity: 100% for both). The sensitivity of p-tau 181 in differentiating MCI patients from controls was significantly (p < 0.05) superior to that of FDG-PET (75 vs. 44%) at a comparably high specificity (82 vs. 91%); t-tau measures were less accurate in all analyses. Conclusions: FDG-PET and CSF p-tau(181) levels are able to discriminate DAT in heterogeneous and unselected samples with a high accuracy. CSF p-tau(181) might be somewhat superior for a sensitive detection of patients with MCI. Copyright (C) 2010 S. Karger AG, Base

    Good practices for the automated production of <sup>18</sup>F-SiFA radiopharmaceuticals

    Get PDF
    Background: The positron emitting isotope fluorine-18 (18F) possesses almost ideal physicochemical properties for the development of radiotracers for diagnostic molecular imaging employing positron emission tomography (PET). 18F in its nucleophilic anionic 18F− form is usually prepared by bombarding an enriched 18O water target with protons of various energies between 5 and 20 MeV depending on the technical specifications of the cyclotron. Large thick-target yields between 5 and 14 GBq/µA can be obtained, enough to prepare large batches of radiotracers capable to serve a considerable contingent of patients (50 + per clinical batch). The overall yield of the radiotracer however depends on the efficiency of the 18F labeling chemistry. The Silicon Fluoride Acceptor chemistry (SiFA) has introduced a convenient and highly efficient way to provide clinical peptide-based 18F-radiotracers in a kit-like procedure matching the convenience of 99mTc radiopharmaceuticals. Main body: A radiotracer’s clinical success primarily hinges on whether its synthesis can be automated. Due to its simplicity, the SiFA chemistry, which is based on isotopic exchange (18F for 19F), does not only work in a manual setup but has been proven to be automatable, yielding large batches of 18F-radiotracers of high molar activity (Am). The production of SiFA radiotracer can be centralized and the radiopharmaceutical be distributed via the “satellite” principle, where one production facility economically serves multiple clinical application sites. Clinically validated tracers such as [18F]SiTATE and [18F]Ga-rhPSMA-7/-7.3 have been synthesized in an automated synthesis unit under good manufacturing practice conditions and used in large patient cohorts. Communication of common guidelines and practices is warranted to further the dissemination of SiFA radiopharmaceuticals and to give easy access to this technology. Conclusion: This current review highlights the most recent achievements in SiFA radiopharmaceutical automation geared towards large batch production for clinical application. Best practice advice and guidance towards a facilitated implementation of the SiFA technology into new and already operating PET tracer production facilities is provided. A brief outlook spotlights the future potential of SiFA radiochemistry within the landscape of non-canonical labeling chemistries.</p

    Good practices for the automated production of <sup>18</sup>F-SiFA radiopharmaceuticals

    Get PDF
    Background: The positron emitting isotope fluorine-18 (18F) possesses almost ideal physicochemical properties for the development of radiotracers for diagnostic molecular imaging employing positron emission tomography (PET). 18F in its nucleophilic anionic 18F− form is usually prepared by bombarding an enriched 18O water target with protons of various energies between 5 and 20 MeV depending on the technical specifications of the cyclotron. Large thick-target yields between 5 and 14 GBq/µA can be obtained, enough to prepare large batches of radiotracers capable to serve a considerable contingent of patients (50 + per clinical batch). The overall yield of the radiotracer however depends on the efficiency of the 18F labeling chemistry. The Silicon Fluoride Acceptor chemistry (SiFA) has introduced a convenient and highly efficient way to provide clinical peptide-based 18F-radiotracers in a kit-like procedure matching the convenience of 99mTc radiopharmaceuticals. Main body: A radiotracer’s clinical success primarily hinges on whether its synthesis can be automated. Due to its simplicity, the SiFA chemistry, which is based on isotopic exchange (18F for 19F), does not only work in a manual setup but has been proven to be automatable, yielding large batches of 18F-radiotracers of high molar activity (Am). The production of SiFA radiotracer can be centralized and the radiopharmaceutical be distributed via the “satellite” principle, where one production facility economically serves multiple clinical application sites. Clinically validated tracers such as [18F]SiTATE and [18F]Ga-rhPSMA-7/-7.3 have been synthesized in an automated synthesis unit under good manufacturing practice conditions and used in large patient cohorts. Communication of common guidelines and practices is warranted to further the dissemination of SiFA radiopharmaceuticals and to give easy access to this technology. Conclusion: This current review highlights the most recent achievements in SiFA radiopharmaceutical automation geared towards large batch production for clinical application. Best practice advice and guidance towards a facilitated implementation of the SiFA technology into new and already operating PET tracer production facilities is provided. A brief outlook spotlights the future potential of SiFA radiochemistry within the landscape of non-canonical labeling chemistries.</p

    τBu₂SiF-Derivatized D₂-Receptor Ligands: The First SiFA-Containing Small Molecule Radiotracers for Target-Specific PET-Imaging

    Get PDF
    The synthesis, radiolabeling and in vitro evaluation of new silicon-fluoride acceptor (SiFA) derivatized D-2-receptor ligands is reported. The SiFA-technology simplifies the introduction of fluorine-18 into target specific biomolecules for Positron-Emission-Tomography (PET). However, one of the remaining challenges, especially for small molecules such as receptor-ligands, is the bulkiness of the SiFA-moiety. We therefore synthesized four Fallypride SiFA-conjugates derivatized either directly at the benzoic acid ring system (SiFA-DMFP, SiFA-FP, SiFA-DDMFP) or at the butyl-side chain (SiFA-M-FP) and tested their receptor affinities. We found D2-receptor affinities for all compounds in the nanomolar range (Ki(SiFA-DMFP) = 13.6 nM, Ki(SiFA-FP) = 33.0 nM, Ki(SiFA-DDMFP) = 62.7 nM and Ki(SiFA-M-FP) = 4.21 nM). The radiofluorination showed highest yields when 10 nmol of the precursors were reacted with F-18]fluoride/TBAHCO(3) in acetonitrile. After a reversed phased cartridge purification the desired products could be isolated as an injectable solution after only 10 min synthesis time with radiochemical yields (RCY) of more than 40% in the case of SiFA-DMFP resulting in specific activities >41 GBq/mu mol (>1,100 Ci/mmol). Furthermore, the radiolabeled products were shown to be stable in the injectable solutions, as well as in human plasma, for at least 90 min

    The assessment of left ventricular mechanical dyssynchrony from gated 99mTc-tetrofosmin SPECT and gated 18F-FDG PET by QGS: a comparative study

    Get PDF
    BACKGROUND Due to partly conflicting studies, further research is warranted with the QGS software package, with regard to the performance of gated FDG PET phase analysis as compared to gated MPS as well as the establishment of possible cut-off values for FDG PET to define dyssynchrony. METHODS Gated MPS and gated FDG PET datasets of 93 patients were analyzed with the QGS software. BW, Phase SD, and Entropy were calculated and compared between the methods. The performance of gated PET to identify dyssynchrony was measured against SPECT as reference standard. ROC analysis was performed to identify the best discriminator of dyssynchrony and to define cut-off values. RESULTS BW and Phase SD differed significantly between the SPECT and PET. There was no significant difference in Entropy with a high linear correlation between methods. There was only moderate agreement between SPECT and PET to identify dyssynchrony. Entropy was the best single PET parameter to predict dyssynchrony with a cut-off point at 62%. CONCLUSION Gated MPS and gated FDG PET can assess LVMD. The methods cannot be used interchangeably. Establishing reference ranges and cut-off values is difficult due to the lack of an external gold standard. Further prospective research is necessary
    corecore