256 research outputs found
How to measure response diversity
The insurance effect of biodiversity—that diversity enhances and stabilises aggregate ecosystem properties—is mechanistically underlain by inter- and intraspecific trait variation in organismal responses to environmental change. This variation, termed response diversity, is therefore a potentially critical determinant of ecological stability. However, response diversity has yet to be widely quantified, possibly due to difficulties in its measurement. Even when it has been measured, approaches have varied.Here, we review methods for measuring response diversity and from them distil a methodological framework for quantifying response diversity from experimental and/or observational data, which can be practically applied in lab and field settings across a range of taxa.Previous empirical studies on response diversity most commonly invoke functional response traits as proxies aimed at capturing functional responses to the environment. Our approach, which is based on environment-dependent functional responses to any biotic or abiotic environmental variable, is conceptually simple and robust to any form of environmental response, including nonlinear responses. Given its derivation from empirical data on functional responses, this approach should more directly reflect response diversity than the trait-based approach dominant in the literature.By capturing even subtle inter- or intraspecific variation in environmental responses, and environment-dependencies in response diversity, we hope this framework will motivate tests of the diversity-stability relationship from a new perspective, and provide an approach for mapping, monitoring, and conserving this critical dimension of biodiversity
How to measure response diversity
The insurance effect of biodiversity—that diversity stabilises aggregate ecosystem properties—is mechanistically underlain by inter‐ and intraspecific trait variation in organismal responses to the environment. This variation, termed response diversity, is therefore a potentially critical determinant of ecological stability. However, response diversity has yet to be widely quantified, possibly due to difficulties in its measurement. Even when it has been measured, approaches have varied.
Here, we review methods for measuring response diversity and from them distil a methodological framework for quantifying response diversity from experimental and/or observational data, which can be practically applied in laboratory and field settings across a range of taxa.
Previous empirical studies on response diversity most commonly invoke response traits as proxies aimed at capturing species' ecological responses to the environment. Our approach, which is based on environment‐dependent ecological responses to any biotic or abiotic environmental variable, is conceptually simple and robust to any form of environmental response, including nonlinear responses. Given its derivation from empirical data on species' ecological responses, this approach should more directly reflect response diversity than the trait‐based approach dominant in the literature.
By capturing even subtle inter‐ or intraspecific variation in environmental responses, and environment dependencies in response diversity, we hope this framework will motivate tests of the diversity–stability relationship from a new perspective, and provide an approach for mapping, monitoring and conserving this critical dimension of biodiversity
Maintenance of Positive Diversity-Stability Relations along a Gradient of Environmental Stress
Environmental stress is widely considered to be an important factor in regulating whether changes in diversity will affect the functioning and stability of ecological communities.We investigated the effects of a major environmental stressor (a decrease in water volume) on diversity-abundance and diversity-stability relations in laboratory microcosms composed of temperate multi-trophic rock pool communities to identify differences in community and functional group responses to increasing functional group richness along a gradient of environmental stress (low, medium, and high water volume). When a greater number of functional groups were present, communities were less temporally variable and achieved higher abundances. The stabilizing effect of increased functional group richness was observed regardless of the level of environmental stress the community was subjected too. Despite the strong consistent stabilizing effect of increased functional group richness on abundance, the way that individual functional groups were affected by functional group richness differed along the stress gradient. Under low stress, communities with more functional groups present were more productive and showed evidence of strong facilitative interactions. As stress increased, the positive effect of functional group richness on community abundance was no longer observed and compensatory responses became more common. Responses of individual functional groups to functional group richness became increasing heterogeneous are stress increased, prompting shifts from linear diversity-variability/abundance relations under low stress to a mix of linear and non-linear responses under medium and high stress. The strength of relations between functional group richness and both the abundances and temporal variability of functional groups also increased as stress increased.While stress did not affect the relation between functional group richness and stability per se, the way in which functional groups responded to changes in functional group richness differed as stress increased. These differences, which include increases in the heterogeneity of responses of individual functional groups, increases in compensatory dynamics, and increases in the strength of richness-abundance and richness-variability relations, may be critical to maintaining stability under increasingly stressful environmental conditions
The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides
Amide bond formation is one of the most important reactions in pharmaceutical synthetic chemistry. The development of sustainable methods for amide bond formation, including those that are catalyzed by enzymes, is therefore of significant interest. The ATP-dependent amide bond synthetase (ABS) enzyme McbA, from Marinactinospora thermotolerans, catalyzes the formation of amides as part of the biosynthetic pathway towards the marinacarboline secondary metabolites. The reaction proceeds via an adenylate intermediate, with both adenylation and amidation steps catalyzed within one active site. In this study, McbA was applied to the synthesis of pharmaceutical-type amides from a range of aryl carboxylic acids with partner amines provided at 1-5 molar equivalents. The structure of McbA revealed the structural determinants of aryl acid substrate tolerance and differences in conformation associated with the two half reactions catalyzed. The catalytic performance of McbA, coupled with the structure, suggest that this and other ABS enzymes may be engineered for applications in the sustainable synthesis of pharmaceutically relevant (chiral) amides
Predation effects on mean time to extinction under demographic stochasticity
Methods for predicting the probability and timing of a species' extinction
are typically based on a combination of theoretical models and empirical data,
and focus on single species population dynamics. Of course, species also
interact with each other, forming more or less complex networks of
interactions. Models to assess extinction risk often lack explicit
incorporation of these interspecific interactions. We study a birth and death
process in which the death rate includes an effect from predation. This
predation rate is included via a general nonlinear expression for the
functional response of predation to prey density. We investigate the effects of
the foraging parameters (e.g. attack rate and handling time) on the mean time
to extinction. Mean time to extinction varies by orders of magnitude when we
alter the foraging parameters, even when we exclude the effects of these
parameters on the equilibrium population size. In particular we observe an
exponential dependence of the mean time to extinction on handling time. These
findings clearly show that accounting for the nature of interspecific
interactions is likely to be critically important when estimating extinction
risk.Comment: 11 pages, 4 figures; Typos removed. For further discussion about the
paper go to http://purl.org/net/extinctio
Global Patterns of Guild Composition and Functional Diversity of Spiders
The objectives of this work are: (1) to define spider guilds for all extant families worldwide; (2) test if guilds defined at family level are good surrogates of species guilds; (3) compare the taxonomic and guild composition of spider assemblages from different parts of the world; (4) compare the taxonomic and functional diversity of spider assemblages and; (5) relate functional diversity with habitat structure. Data on foraging strategy, prey range, vertical stratification and circadian activity was collected for 108 families. Spider guilds were defined by hierarchical clustering. We searched for inconsistencies between family guild placement and the known guild of each species. Richness and abundance per guild before and after correcting guild placement were compared, as were the proportions of each guild and family between all possible pairs of sites. Functional diversity per site was calculated based on hierarchical clustering. Eight guilds were discriminated: (1) sensing, (2) sheet, (3) space, and (4) orb web weavers; (5) specialists; (6) ambush, (7) ground, and (8) other hunters. Sixteen percent of the species richness corresponding to 11% of all captured individuals was incorrectly attributed to a guild by family surrogacy; however, the correlation of uncorrected vs. corrected guilds was invariably high. The correlation of guild richness or abundances was generally higher than the correlation of family richness or abundances. Functional diversity was not always higher in the tropics than in temperate regions. Families may potentially serve as ecological surrogates for species. Different families may present similar roles in the ecosystems, with replacement of some taxa by other within the same guild. Spiders in tropical regions seem to have higher redundancy of functional roles and/or finer resource partitioning than in temperate regions. Although species and family diversity were higher in the tropics, functional diversity seems to be also influenced by altitude and habitat structure
Improving understanding of the functional diversity of fisheries by exploring the influence of global catch reconstruction
Functional diversity is thought to enhance ecosystem resilience, driving research focused on trends in the functional composition of fisheries, most recently with new reconstructions of global catch data. However, there is currently little understanding of how accounting for unreported catches (e.g. small-scale and illegal fisheries, bycatch and discards) influences functional diversity trends in global fisheries. We explored how diversity estimates varied among reported and unreported components of catch in 2010, and found these components had distinct functional fingerprints. Incorporating unreported catches had little impact on global-scale functional diversity patterns. However, at smaller, management-relevant scales, the effects of incorporating unreported catches were large (changes in functional diversity of up to 46%). Our results suggest there is greater uncertainty about the risks to ecosystem integrity and resilience from current fishing patterns than previously recognized. We provide recommendations and suggest a research agenda to improve future assessments of functional diversity of global fisheries
Recommended from our members
Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield
How insects promote crop pollination remains poorly understood in terms of the contribution of functional trait differences between species. We used meta-analyses to test for correlations between community abundance, species richness and functional trait metrics with oilseed rape yield, a globally important crop. While overall abundance is consistently important in predicting yield, functional divergence between species traits also showed a positive correlation. This result supports the complementarity hypothesis that pollination function is maintained by non-overlapping trait distributions. In artificially constructed communities (mesocosms), species richness is positively correlated with yield, although this effect is not seen under field conditions. As traits of the dominant species do not predict yield above that attributed to the effect of abundance alone, we find no evidence in support of the mass ratio hypothesis. Management practices increasing not just pollinator abundance, but also functional divergence, could benefit oilseed rape agriculture
Wiggle-match radiocarbon dating of the Taupo eruption
The Taupo eruption deposit is an isochronous marker bed that spans much of New Zealand’s North Island and pre-dates human arrival. Holdaway et al. (2018, Nature Comms 9, 4110) propose that the current Taupo eruption date is inaccurate and that the eruption occurred “…decades to two centuries…” after the published wiggle-match estimate of 232 ± 10 CE (2 s.d.) derived from a tanekaha (Phyllocladus trichomanoides) tree at the Pureora buried forest site (Hogg et al. 2012, The Holocene 22, 439-449). Holdaway et al. (2018) propose that trees growing at Pureora (and other near-source areas) that were killed and buried by the climactic ignimbrite event were affected by ¹⁴C-depleted (magmatic) CO₂. Holdaway et al.'s (2018) proposal utilises a wide range of published ¹⁴C data, but their work results in assertions that are implausible. Four parts to their hypothesis are considered here
Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity
BACKGROUND:Two decades of research showing that increasing plant diversity results in greater community productivity has been predicated on greater functional diversity allowing access to more of the total available resources. Thus, understanding phenotypic attributes that allow species to partition resources is fundamentally important to explaining diversity-productivity relationships. METHODOLOGY/PRINCIPAL FINDINGS:Here we use data from a long-term experiment (Cedar Creek, MN) and compare the extent to which productivity is explained by seven types of community metrics of functional variation: 1) species richness, 2) variation in 10 individual traits, 3) functional group richness, 4) a distance-based measure of functional diversity, 5) a hierarchical multivariate clustering method, 6) a nonmetric multidimensional scaling approach, and 7) a phylogenetic diversity measure, summing phylogenetic branch lengths connecting community members together and may be a surrogate for ecological differences. Although most of these diversity measures provided significant explanations of variation in productivity, the presence of a nitrogen fixer and phylogenetic diversity were the two best explanatory variables. Further, a statistical model that included the presence of a nitrogen fixer, seed weight and phylogenetic diversity was a better explanation of community productivity than other models. CONCLUSIONS:Evolutionary relationships among species appear to explain patterns of grassland productivity. Further, these results reveal that functional differences among species involve a complex suite of traits and that perhaps phylogenetic relationships provide a better measure of the diversity among species that contributes to productivity than individual or small groups of traits
- …