11 research outputs found

    Turbulence structure and interaction with steep breaking waves

    Get PDF
    Large-eddy and interface simulation using an interface tracking-based multi-fluid flow solver is conducted to investigate the breaking of steep water waves on a beach of constant bed slope. The present investigation focuses mainly on the ‘weak plunger' breaking wave type and provides a detailed analysis of the two-way interaction between the mean fluid flow and the sub-modal motions, encompassing wave dynamics and turbulence. The flow is analysed from two points of views: mean to sub-modal exchange, and wave to turbulence interaction within the sub-modal range. Wave growth and propagation are due to energy transfer from the mean flow to the waves, and transport of mean momentum by these waves. The vigorous downwelling-upwelling patterns developing at the head and tail of each breaker are shown to generate both negative- and positive-signed energy exchange contributions in the thin sublayer underneath the water surface. The details of these exchange mechanisms are thoroughly discussed in this paper, together with the interplay between three-dimensional small-scale breaking associated with turbulence and the dominant two-dimensional wave motion. A conditional zonal analysis is proposed for the first time to understand the transient mechanisms of turbulent kinetic energy production, decay, diffusion and transport and their dependence and/or impact on surface wrinkling over the entire breaking process. The simulations provide a thorough picture of air-liquid coherent structures that develop over the breaking process, and link them to the transient mechanisms responsible for their local incidenc

    Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation

    Full text link
    In this paper, three improvements for modelling surface tension-dominated interfacial flows using interface tracking-based solution algorithms are presented. We have developed an improved approach to curvature estimation for incorporation into modern mesh-based surface tension models such as the Continuum Surface Force (CSF) and Sharp Surface Force (SSF) models. The scheme involves generating samples of curvature estimates from the multitude of height functions that can be generated from VOF representations of interfaces, and applying quality statistics based on interface orientation and smoothness to choose optimal candidates from the samples. In this manner, the orientation-dependence of past schemes for height function-based curvature estimation is ameliorated, the use of compact stencils for efficient computation can be maintained, and robustness is enhanced even in the presence of noticeable subgrid-scale disturbances in the interface representation. For surface tension-dominated flows, the explicit capillary timestep restriction is relaxed through timescale-separated slope limiting that identifies spurious modes in curvature evolution and omits them from contributing to surface force computations, thus promoting efficiency in simulation through the use of less timesteps. Efficiency in flow simulation is further promoted by incorporating awareness of interface location into multigrid preconditioning for Krylov subspace-based solution of elliptic problems. This use of interface-cognizance in solving problems such as the Helmholtz equation and the Poisson equation enables multigrid-like convergence in discontinuous-coefficient elliptic problems without the expense of constructing the Galerkin coarse-grid operator. The key improvements in the surface tension modelling and the numerical linear algebra are also applicable to level-set-based interfacial flow simulation

    An assessment of outcomes with intramedullary fixation of fractured ribs

    Get PDF
    BACKGROUND: Surgical management of fractured ribs with internal fixation is an increasingly accepted therapy. Concurrently, specific rib fixation prostheses are being developed which should improve results and minimise hardware and rib/splint construct failures. The Synthes titanium intramedullary splint lends itself to difficult to access areas such as posterior rib fractures and fractures under the scapula. We analyse a case series of patients in whom this rib fixation prosthesis has been used. METHODS: Fifteen patients received 35 intramedullary splints. Follow up at 3 and 6 months was performed with three dimensional computed tomography scanning to assess for bone alignment, callus formation and healing, residual deformity, hardware failure or cut through. Computerized finite element analysis (FEA) was used to model forces acting on a posterior fracture with and without an intramedullary fixation splint in situ. RESULTS: Complete healing (bony union) was noted in only 3 (9 %) of the fractures fixed with splints by 3 months. Partial healing (cartilaginous union) was noted in 28 of the 33 fractures (85 %), and non healing was noted in only 2 (6 %). In both those two patients, failure at the rib / splint interface was noted after both patients reported sneezing. No hardware failures were noted. By 6 months the fractures which had shown partial healing, had all completely healed. There were no late failures (between 3 and 6 months) of either hardware or rib/splint interfaces. FEA modelling identified sites of increased stress in the rib at the rib / splint interface and in a modelled intramedullary splint where it spans the fracture. CONCLUSIONS: Further analysis of outcomes with intramedullary splints is warranted as well as further development of intramedullary rib fixation solutions

    Cavitation microstreaming and stress fields created by microbubbles

    Full text link
    Cavitation microstreaming plays a role in the therapeutic action of microbubbles driven by ultrasound, such as the sonoporative and sonothrombolytic phenomena. Microscopic particle-image velocimetry experiments are presented. Results show that many different microstreaming patterns are possible around a microbubble when it is on a surface, albeit for microbubbles much larger than used in clinical practice. Each pattern is associated with a particular oscillation mode of the bubble, and changing between patterns is achieved by changing the sound frequency. Each microstreaming pattern also generates different shear stress and stretch/compression distributions in the vicinity of a bubble on a wall. Analysis of the micro-PIV results also shows that ultrasound-driven microstreaming flows around bubbles are feasible mechanisms for mixing therapeutic agents into the surrounding blood, as well as assisting sonoporative delivery of molecules across cell membranes. Patterns show significant variations around the bubble, suggesting sonoporation may be either enhanced or inhibited in different zones across a cellular surface. Thus, alternating the patterns may result in improved sonoporation and sonothrombolysis. The clear and reproducible delineation of microstreaming patterns based on driving frequency makes frequency-based pattern alternation a feasible alternative to the clinically less desirable practice of increasing sound pressure for equivalent sonoporative or sonothrombolytic effect. Surface divergence is proposed as a measure relevant to sonoporation
    corecore