3 research outputs found

    Safety and immunogenicity of a variant-adapted SARS-CoV-2 recombinant protein vaccine with AS03 adjuvant as a booster in adults primed with authorized vaccines: a phase 3, parallel-group studyResearch in context

    No full text
    Summary: Background: In a parallel-group, international, phase 3 study (ClinicalTrials.gov NCT04762680), we evaluated prototype (D614) and Beta (B.1.351) variant recombinant spike protein booster vaccines with AS03-adjuvant (CoV2 preS dTM-AS03). Methods: Adults, previously primed with mRNA (BNT162b2, mRNA-1273), adenovirus-vectored (Ad26.CoV2.S, ChAdOx1nCoV-19) or protein (CoV2 preS dTM-AS03 [monovalent D614; MV(D614)]) vaccines were enrolled between 29 July 2021 and 22 February 2022. Participants were stratified by age (18–55 and ≥ 56 years) and received one of the following CoV2 preS dTM-AS03 booster formulations: MV(D614) (n = 1285), MV(B.1.351) (n = 707) or bivalent D614 + B.1.351 (BiV; n = 625). Unvaccinated adults who tested negative on a SARS-CoV-2 rapid diagnostic test (control group, n = 479) received two primary doses, 21 days apart, of MV(D614). Anti-D614G and anti-B.1.351 antibodies were evaluated using validated pseudovirus (lentivirus) neutralization (PsVN) assay 14 days post-booster (day [D]15) in 18–55-year-old BNT162b2-primed participants and compared with those pre-booster (D1) and on D36 in 18–55-year-old controls (primary immunogenicity endpoints). PsVN titers to Omicron BA.1, BA.2 and BA.4/5 subvariants were also evaluated. Safety was evaluated over a 12-month follow-up period. Planned interim analyses are presented up to 14 days post-last vaccination for immunogenicity and over a median duration of 5 months for safety. Findings: All three boosters elicited robust anti-D614G or -B.1.351 PsVN responses for mRNA, adenovirus-vectored and protein vaccine-primed groups. Among BNT162b2-primed adults (18–55 years), geometric means of the individual post-booster versus pre-booster titer ratio (95% confidence interval [CI]) were: for MV (D614), 23.37 (18.58–29.38) (anti-D614G); for MV(B.1.351), 35.41 (26.71–46.95) (anti-B.1.351); and for BiV, 14.39 (11.39–18.28) (anti-D614G) and 34.18 (25.84–45.22 (anti-B.1.351). GMT ratios (98.3% CI) versus post-primary vaccination GMTs in controls, were: for MV(D614) booster, 2.16 (1.69; 2.75) [anti-D614G]; for MV(B.1.351), 1.96 (1.54; 2.50) [anti-B.1.351]; and for BiV, 2.34 (1.84; 2.96) [anti-D614G] and 1.39 (1.09; 1.77) [anti-B.1.351]. All booster formulations elicited cross-neutralizing antibodies against Omicron BA.2 (across priming vaccine subgroups), Omicron BA.1 (BNT162b2-primed participants) and Omicron BA.4/5 (BNT162b2-primed participants and MV D614-primed participants). Similar patterns in antibody responses were observed for participants aged ≥56 years. Reactogenicity tended to be transient and mild-to-moderate severity in all booster groups. No safety concerns were identified. Interpretation: CoV2 preS dTM-AS03 boosters demonstrated acceptable safety and elicited robust neutralizing antibodies against multiple variants, regardless of priming vaccine. Funding: Sanofi and Biomedical Advanced Research and Development Authority (BARDA)

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore