1,362 research outputs found

    A New Supersensitive Flame Detector and its Use for Early Forest Fire Detection

    Full text link
    A new flame detector, three orders of magnitude more powerful than the existing ones, is presented. This detector needs to be mass-produced for its use in order to be incorporated in an early forest fire detection system. A project able to implement its use to overcome the forest fire emergency is described

    Gain limits of a Thick GEM in high-purity Ne, Ar and Xe

    Get PDF
    The dependence of the avalanche charge gain in Thick Gas Electron Multipliers (THGEM) on the purity of Ne, Ar and Xe filling gases was investigated. The gain, measured with alpha-particles in standard conditions (atmospheric pressure, room temperature), was found to considerably drop in gases purified by non-evaporable getters. On the other hand, small N2 admixtures to noble gases resulted in high reachable gains. The results are of general relevance in the operation of gas-avalanche detectors in noble gases, particularly that of two-phase cryogenic detectors for rare events.Comment: 15 pages, 6 figures, submitted to JINS

    On the physics and technology of gaseous particle detectors

    Full text link
    Despite an already long and fruitful history, gaseous elementary-particle detectors remain today an important mainstay of high-energy and nuclear physics experiments and of radiation detection in general. In here we briefly describe some of the gaseous detector's main technologies and applications, along with some unsolved gas-discharge physics aspects of practical relevance.Comment: Submitted to Plasma Sources in Science and Technolog

    R&D results on a CsI-TTGEM based photodetector

    Full text link
    The very high momentum particle identification detector proposed for the ALICE upgrade is a focusing RICH using a C4F10 gaseous radiator. For the detection of Cherenkov photons, one of the options currently under investigation is to use a CsI coated Triple-Thick-GEM (CsI-TTGEM) with metallic or resistive electrodes. We will present results from the laboratory studies as well as preliminary results of beam tests of a RICH detector prototype consisting of a CaF2 radiator coupled to a 10x10 cm2 CsI-TTGEM equipped with a pad readout and GASSIPLEX-based front-end electronics. With such a prototype the detection of Cherenkov photons simultaneously with minimum ionizing particles has been achieved for the first time in a stable operation mode

    90 m ÎČ * optics for ATLAS/ALFA

    No full text
    http://accelconf.web.cern.ch/AccelConf/IPAC2011/papers/tupz002.pdfInternational audienceWe describe a high ÎČ∗ optics developed for the ATLAS detector at the LHC interaction point IP1. Roman Pots have been installed 240 m left and right of IP1 to allow to measure the absolute luminosity and the total elastic cross section for ATLAS with ALFA (Absolute Luminosity for ATLAS). Ultimately, it is planned to perform these mea- surements at a very high ÎČ∗ of 2625 m. Here we describe a new, intermediate ÎČ∗ = 90 m optics, which has been opti- mized for compatibility with the present LHC running con- ditions. We describe the main features and the expected performance of this optics for ALFA

    The current progress of the ALICE Ring Imaging Cherenkov Detector

    Get PDF
    Recently, the last two modules (out of seven) of the ALICE High Momentum Particle Identification detector (HMPID) were assembled and tested. The full detector, after a pre-commissioning phase, has been installed in the experimental area, inside the ALICE solenoid, at the end of September 2006. In this paper we review the status of the ALICE/HMPID project and we present a summary of the series production of the CsI photo-cathodes. We describe the key features of the production procedure which ensures high quality photo-cathodes as well as the results of the quality assessment performed by means of a specially developed 2D scanner system able to produce a detailed map of the CsI photo-current over the entire photo-cathode surface. Finally we present our recent R&D efforts toward the development of a novel generation of imaging Cherenkov detectors with the aim to identify, in heavy ions collisions, hadrons up to 30 GeV/c.Comment: Presented at the Imaging-2006 Conference, Stockholm, Sweden, June 200
    • 

    corecore