40 research outputs found
Adaptation of Current Signals with Floating-Gate Circuits
In this paper we present a new, adaptive spatial-derivative circuit for CMOS image sensors. The circuit removes its offset as a natural part of its operation using a combination of electron tunneling and hot-electron injection to add or remove charge on a floating-gate of an auto-zeroing amplifier. We designed, fabricated and successfully tested a chip with the circuit. Test results show that the circuit reduces the offsets by more than an order of magnitude
Recommended from our members
Discovery of several thousand highly diverse circular DNA viruses.
Although millions of distinct virus species likely exist, only approximately 9000 are catalogued in GenBank's RefSeq database. We selectively enriched for the genomes of circular DNA viruses in over 70 animal samples, ranging from nematodes to human tissue specimens. A bioinformatics pipeline, Cenote-Taker, was developed to automatically annotate over 2500 complete genomes in a GenBank-compliant format. The new genomes belong to dozens of established and emerging viral families. Some appear to be the result of previously undescribed recombination events between ssDNA and ssRNA viruses. In addition, hundreds of circular DNA elements that do not encode any discernable similarities to previously characterized sequences were identified. To characterize these 'dark matter' sequences, we used an artificial neural network to identify candidate viral capsid proteins, several of which formed virus-like particles when expressed in culture. These data further the understanding of viral sequence diversity and allow for high throughput documentation of the virosphere
The Changing Landscape of Neonatal Diabetes Mellitus in Italy Between 2003 and 2022
Context In the last decade the Sanger method of DNA sequencing has been replaced by next-generation sequencing (NGS). NGS is valuable in conditions characterized by high genetic heterogeneity such as neonatal diabetes mellitus (NDM).Objective To compare results of genetic analysis of patients with NDM and congenital severe insulin resistance (c.SIR) identified in Italy in 2003-2012 (Sanger) vs 2013-2022 (NGS).Methods We reviewed clinical and genetic records of 104 cases with diabetes onset before 6 months of age (NDM + c.SIR) of the Italian dataset.Results Fifty-five patients (50 NDM + 5 c.SIR) were identified during 2003-2012 and 49 (46 NDM + 3 c.SIR) in 2013-2022. Twenty-year incidence was 1:103 340 (NDM) and 1:1 240 082 (c.SIR) live births. Frequent NDM/c.SIR genetic defects (KCNJ11, INS, ABCC8, 6q24, INSR) were detected in 41 and 34 probands during 2003-2012 and 2013-2022, respectively. We identified a pathogenic variant in rare genes in a single proband (GATA4) (1/42 or 2.4%) during 2003-2012 and in 8 infants (RFX6, PDX1, GATA6, HNF1B, FOXP3, IL2RA, LRBA, BSCL2) during 2013-2022 (8/42 or 19%, P = .034 vs 2003-2012). Notably, among rare genes 5 were recessive. Swift and accurate genetic diagnosis led to appropriate treatment: patients with autoimmune NDM (FOXP3, IL2RA, LRBA) were subjected to bone marrow transplant; patients with pancreas agenesis/hypoplasia (RFX6, PDX1) were supplemented with pancreatic enzymes, and the individual with lipodystrophy caused by BSCL2 was started on metreleptin.Conclusion NGS substantially improved diagnosis and precision therapy of monogenic forms of neonatal diabetes and c.SIR in Italy
Low in‑hospital mortality rate in patients with COVID‑19 receiving thromboprophylaxis: data from the multicentre observational START‑COVID Register
Abstract
COVID-19 infection causes respiratory pathology with severe interstitial pneumonia and extra-pulmonary complications; in particular, it may predispose to thromboembolic disease. The current guidelines recommend the use of thromboprophylaxis in patients with COVID-19, however, the optimal heparin dosage treatment is not well-established. We conducted a multicentre,
Italian, retrospective, observational study on COVID-19 patients admitted to ordinary wards, to describe clinical characteristic of patients at admission, bleeding and thrombotic events occurring during hospital stay. The strategies used for thromboprophylaxis and its role on patient outcome were, also, described. 1091 patients hospitalized were included in
the START-COVID-19 Register. During hospital stay, 769 (70.7%) patients were treated with antithrombotic drugs: low molecular weight heparin (the great majority enoxaparin), fondaparinux, or unfractioned heparin. These patients were more frequently affected by comorbidities, such as hypertension, atrial fibrillation, previous thromboembolism, neurological disease,and cancer with respect to patients who did not receive thromboprophylaxis. During hospital stay, 1.2% patients had a major bleeding event. All patients were treated with antithrombotic drugs; 5.4%, had venous thromboembolism [30.5% deep vein thrombosis (DVT), 66.1% pulmonary embolism (PE), and 3.4% patients had DVT + PE]. In our cohort the mortality rate
was 18.3%. Heparin use was independently associated with survival in patients aged ≥ 59 years at multivariable analysis. We confirmed the high mortality rate of COVID-19 in hospitalized patients in ordinary wards. Treatment with antithrombotic drugs is significantly associated with a reduction of mortality rates especially in patients older than 59 years
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Morfologia social e contextualização topográfica: a micro-história de Edoardo Grendi
Il saggio prende in considerazione il ruolo di Edoardo Grendi nella teorizzazione della proposta microstorica italiana, generalmente sconosciuto o sottostimato nel panorama accademico sudamericano
Visual Sensors for Focal Plane Computation of Image Features
Feature detection and tracking is a fundamental problem in computer vision research. By detecting and tracking features in an image sequence it is possible to recover
information about both the motion of the viewer and the structure of the environment. The selection of features is a computationally intensive task. We derived two low-complexity algorithms that are suitable for integration in a CMOS sensor with focal-plane processing. We review the two algorithms and the circuits that implement them. We present results from accurate simulations and experimental results from the testing of these CMOS sensors