82 research outputs found
Evaluation of a Set of miRNAs in 26 Cases of Fatal Traumatic Brain Injuries
In forensic medicine, identifying novel biomarkers for use as diagnostic tools to ascertain causes of death is challenging because of sample degradation. To that aim, a cohort (n = 26) of fatal traumatic brain injuries (TBIs) were tested for three candidate miRNAs (namely, miR-124-3p, miR-138-5p, and miR144-3p). For each case, three FFPE specimens (coup area (CA), contrecoup area (CCA), and the corpus callosum (CC)) were investigated, whereas the FFPE brain tissues of 45 subjects (deceased due to acute cardiovascular events) were used as controls. Relative quantification via the ∆∆Ct method returned significantly higher expression levels of the three candidate miRNAs (p < 0.01) in the TBI cases. No difference was detected in the expression levels of any miRNA investigated in the study among the CA, CCA, and CC. Furthermore, the analyzed miRNAs were unrelated to the TBI samples’ post-mortem intervals (PMIs). On the contrary, has-miR-124-3p ahashsa-miR-144-3p were significantly correlated (p < 0.01) with the agonal time in TBI deaths. Since the RNA was highly degraded in autoptic FFPE tissues, it was impossible to analyze the mRNA targets of the miRNAs investigated in the present study, highlighting the necessity of standardizing pre-analytical processes even for autopsy tissues
Active versus passive acquisition of spatial knowledge while controlling a vehicle in a virtual urban space in drivers and non-drivers
Historically real world studies have indicated a spatial learning advantage for active explorers of environments over those whose experience is more passive; a common contrast is made between car drivers and passengers. An experiment was conducted to explore the dual hypotheses that active explorers learn more about the layout of a virtual environment than passive observers and that real world car drivers will learn more regardless of their experimental Active/Passive status. Consistent with earlier studies in VEs, there was no benefit from activity (controlling exploration/movement), arguably because input control competes with spatial information acquisition. However, the results showed that Drivers were more accurate than Non-Drivers at indicating the positions of target locations on a map, in both active and passive conditions and had better route scores than Non-Drivers in the passive condition. It is argued that driving experience may convey a spatial learning advantage over and above activity per se
Dual task interference during gait in patients with unilateral vestibular disorders
<p>Abstract</p> <p>Background</p> <p>Vestibular patients show slower and unsteady gait; they have also been shown to need greater cognitive resources when carrying out balance and cognitive dual tasks (DT). This study investigated DT interference during gait in a middle-aged group of subjects with dizziness and unsteadiness after unilateral vestibular neuronitis and in a healthy control group.</p> <p>Methods</p> <p>Fourteen individuals with subacute unilateral vestibular impairment after neuronitis and seventeen healthy subjects performed gait and cognitive tasks in single and DT conditions. A statistical gait analysis system was used and spatio-temporal parameters were considered. The cognitive task, consisting of backward counting by three, was tape recorded and the number of right figures was then calculated.</p> <p>Results</p> <p>Both patients and controls showed a more conservative gait during DT and between groups significant differences were not found. A significant decrease in cognitive performance during DT was found only in the vestibular group.</p> <p>Conclusions</p> <p>Results suggest that less attentional resources are available during gait in vestibular patients compared to controls, and that a priority is given in keeping up the motor task to the detriment of a decrease of the cognitive performance during DT.</p
Anticipation du mouvement d'un véhicule à l'approche d'une intersection
Les accidents se produisant en intersection peuvent être très illustratifs des problèmes rencontrés par les conducteurs pour analyser les informations visuelles. Ainsi, au cours d'un déplacement, l'environnement dans son ensemble paraît animé d'un mouvement de sens contraire au déplacement. Ce mouvement apparent, ou flux optique, suit un certain nombre de règles d'expansion liées à la nature de l'environnement et à la forme et vitesse du déplacement. La présence d'un élément réellement mobile perturbe localement ces règles d'expansion. La perturbation informe l'observateur en déplacement sur la présence du mouvement objectif mais peut le conduire à une mauvaise identification de l'élément mobile. En isolant l'information de flux optique, nous avons expérimentalement étudié les circonstances dans lesquelles l'observateur se montrait capable d'analyser mouvements apparents et réels
- …