17 research outputs found

    Pertussis Toxin Inhibits Early Chemokine Production To Delay Neutrophil Recruitment in Response to Bordetella pertussis Respiratory Tract Infection in Miceâ–¿

    No full text
    Pertussis is an acute respiratory disease of humans caused by the bacterium Bordetella pertussis. Pertussis toxin (PT) plays a major role in the virulence of this pathogen, including important effects that it has soon after inoculation. Studies in our laboratory and other laboratories have indicated that PT inhibits early neutrophil influx to the lungs and airways in response to B. pertussis respiratory tract infection in mice. Previous in vitro and in vivo studies have shown that PT can affect neutrophils directly by ADP ribosylating Gi proteins associated with surface chemokine receptors, thereby inhibiting neutrophil migration in response to chemokines. However, in this study, by comparing responses to wild-type (WT) and PT-deficient strains, we found that PT has an indirect inhibitory effect on neutrophil recruitment to the airways in response to infection. Analysis of lung chemokine expression indicated that PT suppresses early neutrophil recruitment by inhibiting chemokine upregulation in alveolar macrophages and other lung cells in response to B. pertussis infection. Enhancement of early neutrophil recruitment to the airways in response to WT infection by addition of exogenous keratinocyte-derived chemokine, one of the dominant neutrophil-attracting chemokines in mice, further revealed an indirect effect of PT on neutrophil chemotaxis. Additionally, we showed that intranasal administration of PT inhibits lipopolysaccharide-induced chemokine gene expression and neutrophil recruitment to the airways, presumably by modulation of signaling through Toll-like receptor 4. Collectively, these results demonstrate how PT inhibits early inflammatory responses in the respiratory tract, which reduces neutrophil influx in response to B. pertussis infection, potentially providing an advantage to the pathogen in this interaction

    Stabilization of the Pertussis Toxin Secretion Apparatus by the C Terminus of PtlDâ–¿

    No full text
    Pertussis toxin (PT) is secreted from Bordetella pertussis by a type IV secretion system, known as the Ptl transporter, that comprises nine different proteins, PtlA to PtlI. In this study, we found that PtlD is required for the stability of three Ptl proteins, PtlE, PtlF, and PtlH. A region limited to the C-terminal 72 amino acids of PtlD (amino acids 392 to 463) was sufficient for maintaining the stability of PtlE, PtlF, and PtlH, although this region was not sufficient to support secretion of the toxin. Further analysis demonstrated that a stretch of 10 amino acids at the C-terminal end of PtlD (amino acids 425 to 434) contributes to transporter stability
    corecore