6 research outputs found

    Management of hyperphosphatemia in patients with end-stage renal disease: focus on lanthanum carbonate

    Get PDF
    Elevated serum phosphate levels as a consequence of chronic kidney disease (CKD) contribute to the increased cardiovascular risk observed in dialysis patients. Protein restriction and dialysis fail to adequately prevent hyperphosphatemia, and in general treatment with oral phosphate binding agents is necessary in patients with advanced CKD. Phosphate plays a pivotal role in the development of vascular calcification, one of the factors contributing to increased cardiovascular risk in CKD patients. Treatment of hyperphosphatemia with standard calcium-based phosphate binders and vitamin D compounds can induce hypercalcemic episodes, increase the Ca Ɨ PO4 product and thus add to the risk of ectopic mineralization. In this review, recent clinical as well as experimental data on lanthanum carbonate, a novel, non-calcium, non-resin phosphate binding agent are summarized. Although lanthanum is a metal cation no aluminium-like toxicity is observed since the bioavailability of lanthanum is extremely low and its metabolism differs from that of aluminium. Clinical studies now document the absence of toxic effects of lanthanum for up to 6 years of follow-up. The effects of lanthanum on bone, vasculature and brain are discussed and put in perspective with lanthanum pharmacokinetics

    Cellular infiltrates and injury evaluation in a rat model of warm pulmonary ischemiaā€“reperfusion

    Get PDF
    INTRODUCTION: Beside lung transplantation, cardiopulmonary bypass, isolated lung perfusion and sleeve resection result in serious pulmonary ischemiaā€“reperfusion injury, clinically known as acute respiratory distress syndrome. Very little is known about cells infiltrating the lung during ischemiaā€“reperfusion. Therefore, a model of warm ischemiaā€“reperfusion injury was applied to differentiate cellular infiltrates and to quantify tissue damage. METHODS: Fifty rats were randomized into eight groups. Five groups underwent warm ischemia for 60 min followed by 30 min and 1ā€“4 hours of warm reperfusion. An additional group was flushed with the use of isolated lung perfusion after 4 hours of reperfusion. One of two sham groups was also flushed. Neutrophils and oedema were investigated by using samples processed with hematoxylin/eosin stain at a magnification of Ɨ500. Immunohistochemistry with antibody ED-1 (magnification Ɨ250) and antibody 1F4 (magnification Ɨ400) was applied to visualize macrophages and T cells. TdT-mediated dUTP nick end labelling was used for detecting apoptosis. Statistical significance was accepted at P < 0.05. RESULTS: Neutrophils were increased after 30 min until 4 hours of reperfusion as well as after flushing. A doubling in number of macrophages and a fourfold increase in T cells were observed after 30 min until 1 and 2 hours of reperfusion, respectively. Apoptosis with significant oedema in the absence of necrosis was seen after 30 min to 4 hours of reperfusion. CONCLUSIONS: After warm ischemiaā€“reperfusion a significant increase in infiltration of neutrophils, T cells and macrophages was observed. This study showed apoptosis with serious oedema in the absence of necrosis after all periods of reperfusion
    corecore