4 research outputs found

    Combat and Warfare in the Early Paleolithic and Medically Unexplained Musculo-Facial Pain in the 21st Century War Veterns and Active-Duty Military Personnel

    Get PDF
    In a series of recent articles, we suggest that family dentists, military dentists and psychiatrists with expertise in posttraumatic stress disorder (especially in the Veterans Health Administration) are likely to see an increased number of patients with symptomatic jaw-clenching and early stages of tooth- grinding (Bracha et al., 2005). Returning warfighters and other returnees from military deployment may be especially at risk for high rates of clenching- induced masticatory muscle disorders at early stages of incisor grinding. The literature we have recently reviewed strongly supports the conclusion that clenching and grinding may primarily be a manifestation of experiencing extreme fear or severe chronic distress (respectively). We have recently reviewed the clinical and paleoanthropological literature and have noted that ancestral warfare and ancestral combat, in the early Paleolithic Environment of Evolutionary Adaptedness (EEA) may be a neglected factor explaining the conservation of the archaic trait of bite-muscle strengthening. We have hypothesized that among ancestral warriors, jaw clenching may have rapidly strengthened the two primary muscles involved in biting, the masseter muscles and the much larger temporalis muscles. The strengthening of these muscles may have served the purpose of enabling a stronger, deeper, and therefore more lethal, defensive bite for early Paleolithic humans. The neuroevolutionary perspective presented here may be novel to many dentists. However, it may be useful in patient education and in preventing progression from jaw-clenching to chronic facial pain

    Spike-Timing Precision and Neuronal Synchrony Are Enhanced by an Interaction between Synaptic Inhibition and Membrane Oscillations in the Amygdala

    Get PDF
    The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (∼2–6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ∼300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ∼130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine
    corecore