5 research outputs found

    Water treadmill exercise reduces equine limb segmental accelerations and increases shock attenuation

    No full text
    Abstract Background Equine water treadmills (WTs) are growing in popularity because they are believed to allow for high resistance, low impact exercise. However, little is known about the effect of water height on limb loading. The aim of this study was to evaluate the effect of water height and speed on segmental acceleration and impact attenuation during WT exercise in horses. Three uniaxial accelerometers (sampling rate: 2500 Hz) were secured on the left forelimb (hoof, mid-cannon, mid-radius). Horses walked at two speeds (S1: 0.83 m/s, S2: 1.39 m/s) and three water heights (mid-cannon, carpus, stifle), with a dry WT control. Peak acceleration of each segment was averaged over five strides, attenuation was calculated, and stride frequency was estimated by the time between successive hoof contacts. Linear mixed effects models were used to examine the effects of water height, speed, and accelerometer location on peak acceleration, attenuation and stride frequency (p < 0.05). Results Peak acceleration at all locations was lower with water of any height compared to the dry control (p < 0.0001). Acceleration was reduced with water at the height of the stifle compared to mid-cannon water height (p = 0.02). Water at the height of the stifle attenuated more impact than water at the height of the cannon (p = 0.0001). Conclusions Water immersion during treadmill exercise reduced segmental accelerations and increased attenuation in horses. WT exercise may be beneficial in the rehabilitation of lower limb injuries in horses

    High intensity, short duration pulling in heavy horses: physiological effects of competition and rapid weight change

    No full text
    Abstract Background The Heavy Horse Pull is a competition where teams of two horses pull an increasingly heavy sled for a short distance. Similar to human wrestlers, some horses may undergo rapid weight change in order to enter a lower weight category. The objectives were to study the physiological effects of this practice as well as of the pulling competition in draft horses. Results Fifty horses were divided into light-, middle- and heavyweight categories based on their arrival weights and competed 1–3 days after. Body weight was measured upon arrival and pre-competition. Blood was sampled for chemistry and high sensitivity cardiac troponin T (hscTnT) at arrival, pre- and post-competition in 34, 26 and 20 horses, respectively. Body weight increased significantly between arrival and pre-competition for light (7.2% (Median: 62.8Kg (41.7–77.0)) and middle (8.6% (Median: 80.5Kg (62.7–90.9)) weight categories. Change in body weight was correlated (r = 0.69, p = 0.002) with competition ranking for middleweights. The ratios of weight pulled to team body weight were 2.7 (1.9–2.8), 2.6 (2.5–2.6) and 2.4 (2.2–2.5) for the lightweights, middleweights and heavyweights, respectively. Blood chemistry indicated hemoconcentration on arrival in the middleweight and lightweight horses. Hemoconcentration was not seen on arrival in some horses with marked rapid weight change. Overall, no chemistry parameter changed between pre- and post-competition. The hscTnT stayed within normal range post-competition. Conclusions While horses arrived to the event with indications of hemoconcentration, they appeared to have sufficient time to rehydrate prior to competition, and the effects of the competition were reversible within 3 h

    Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters

    No full text
    Abstract Background Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O2), ventilation (respiratory frequency, tidal volume (VT)), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Results Water height and its interaction with speed had a significant effect on V̇O2, VT and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O2 = 16.70 ml/(kg.min), VT = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Conclusions Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed
    corecore