9 research outputs found
Specification and estimation of a spatially and temporally autocorrelated seemingly unrelated regression model: application to crash rates in China
In transportation studies, variables of interest are often influenced by similar factors and have correlated latent terms (errors). In such cases, a seemingly unrelated regression (SUR) model is normally used. However, most studies ignore the potential temporal and spatial autocorrelations across observations, which may lead to inaccurate conclusions. In contrast, the SUR model proposed in this study also considers these correlations, making the model more behaviorally convincing and applicable to circumstances where a three-dimensional correlation exists, across time, space, and equations. An example of crash rates in Chinese cities is used. The results show that incorporation of spatial and temporal effects significantly improves the model. Moreover, investment in transportation infrastructure is estimated to have statistically significant effects on reducing severe crash rates, but with an elasticity of only −0.078. It is also observed that, while vehicle ownership is associated with higher per capita crash rates, elasticities for severe and non-severe crashes are just 0.13 and 0.18, respectively; much lower than one. The techniques illustrated in this study should contribute to future studies requiring multiple equations in the presence of temporal and spatial effects. Copyright Springer Science+Business Media, LLC 2007Crash rates, Random effects, Seemingly unrelated regression, Spatial and temporal autocorrelation, Spatial econometrics,