2,057 research outputs found
Polymer nanofibers as novel light-emitting sources and lasing material
Polymer micro- and nano-fibers, made of organic light-emitting materials with
optical gain, show interesting lasing properties. Fibers with diameters from
few tens of nm to few microns can be fabricated by electrospinning, a method
based on electrostatic fields applied to a polymer solution. The morphology and
emission properties of these fibers, composed of optically inert polymers
embedding laser dyes, are characterized by scanning electron and fluorescence
microscopy, and lasing is observed under optical pumping for fluences of the
order of 10^2 microJ cm^-2. In addition, light-emitting fibers can be
electrospun by conjugated polymers, their blends, and other active organics,
and can be exploited in a range of photonic and electronic devices. In
particular, waveguiding of light is observed and characterized, showing optical
loss coefficient in the range of 10^2-10^3 cm^-1. The reduced size of these
novel laser systems, combined with the possibility of achieving wavelength
tunability through transistor or other electrode-based architectures embedding
non-linear molecular layers, and with their peculiar mechanical robustness,
open interesting perspectives for realizing miniaturized laser sources to
integrate on-chip optical sensors and photonic circuits.Comment: 7 pages, 3 figures, 27 references. Invited contribution. Copyright
(2013) Society of Photo Optical Instrumentation Engineers. One print or
electronic copy may be made for personal use only. Systematic reproduction
and distribution, duplication of any material in this paper for a fee or for
commercial purposes, or modification of the content of the paper are
prohibite
La purezza perduta. Il sociale nei femminismi otto-novecenteschi
La Social Purity agisce per tutta una parte della vicenda femminista otto-novecentesca francese e anglosassone (Inghilterra e Stati Uniti) come veicolo di istanze molteplici: dal pieno riconoscimento della differenza sessuale nel repubblicanesimo sociale e \u2018differenzialista\u2019 di Hubertine Auclert in Francia, al moderato rifiuto di ogni purezza imposta dall\u2019alto da parte di Josephine Butler in Inghilterra, fino al rovesciamento assoluto dell\u2019idea di superiorit\ue0 morale femminile ad opera del New Womanism americano, attraversato dalla spinta uguale e opposta ad uscire definitivamente dal \u2018sociale\u2019, individualizzando e de-femminilizzando l\u2019atto di liberazione sessuale. Il tutto in un gioco ininterrotto di azioni e reazioni talvolta paradossali, che intrecciano insieme suffragismo e anti-suffragismo, contestazione della complementariet\ue0 coniugale e tentazioni mai sopite di controllo etero o auto-imposto
Razionalit\ue0 democratica e critica femminista nella Francia del XIX secolo: l\u2019eredit\ue0 di Condorcet
Il saggio parte dal cosiddetto 'femminismo' di Condorcet per spingersi ben oltre il Settecento e indagare il riformismo democratico della Terza repubblica francese, all'interno del quale le scienze sociali in generale, e quella medica in particolare, la faranno da padrone connotando la 'police des femmes' in termini di inclusione controllata delle donne
A multiscale-multiphysics strategy for numerical modeling of thin piezoelectric sheets
Flexible piezoelectric devices made of polymeric materials are widely used
for micro- and nano-electro-mechanical systems. In particular, numerous recent
applications concern energy harvesting. Due to the importance of computational
modeling to understand the influence that microscale geometry and constitutive
variables exert on the macroscopic behavior, a numerical approach is developed
here for multiscale and multiphysics modeling of piezoelectric materials made
of aligned arrays of polymeric nanofibers. At the microscale, the
representative volume element consists in piezoelectric polymeric nanofibers,
assumed to feature a linear piezoelastic constitutive behavior and subjected to
electromechanical contact constraints using the penalty method. To avoid the
drawbacks associated with the non-smooth discretization of the master surface,
a contact smoothing approach based on B\'ezier patches is extended to the
multiphysics framework providing an improved continuity of the
parameterization. The contact element contributions to the virtual work
equations are included through suitable electric, mechanical and coupling
potentials. From the solution of the micro-scale boundary value problem, a
suitable scale transition procedure leads to the formulation of a macroscopic
thin piezoelectric shell element.Comment: 11 pages, 6 pages, 21 reference
Computational homogenization of fibrous piezoelectric materials
Flexible piezoelectric devices made of polymeric materials are widely used
for micro- and nano-electro-mechanical systems. In particular, numerous recent
applications concern energy harvesting. Due to the importance of computational
modeling to understand the influence that microscale geometry and constitutive
variables exert on the macroscopic behavior, a numerical approach is developed
here for multiscale and multiphysics modeling of thin piezoelectric sheets made
of aligned arrays of polymeric nanofibers, manufactured by electrospinning. At
the microscale, the representative volume element consists in piezoelectric
polymeric nanofibers, assumed to feature a piezoelastic behavior and subjected
to electromechanical contact constraints. The latter are incorporated into the
virtual work equations by formulating suitable electric, mechanical and
coupling potentials and the constraints are enforced by using the penalty
method. From the solution of the micro-scale boundary value problem, a suitable
scale transition procedure leads to identifying the performance of a
macroscopic thin piezoelectric shell element.Comment: 22 pages, 13 figure
Cooperativity in the enhanced piezoelectric response of polymer nanowires
We provide a detailed insight into piezoelectric energy generation from
arrays of polymer nanofibers. For sake of comparison, we firstly measure
individual poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFe)) fibers
at well-defined levels of compressive stress. Under an applied load of 2 mN,
single nanostructures generate a voltage of 0.45 mV. We show that under the
same load conditions, fibers in dense arrays exhibit a voltage output higher by
about two orders of magnitude. Numerical modelling studies demonstrate that the
enhancement of the piezoelectric response is a general phenomenon associated to
the electromechanical interaction among adjacent fibers, namely a cooperative
effect depending on specific geometrical parameters. This establishes new
design rules for next piezoelectric nano-generators and sensors.Comment: 31 pages, 11 figures, 1 tabl
New insights into electron spin dynamics in the presence of correlated noise
The changes of the spin depolarization length in zinc-blende semiconductors
when an external component of correlated noise is added to a static driving
electric field are analyzed for different values of field strength, noise
amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo
procedure which keeps into account all the possible scattering phenomena of the
hot electrons in the medium and includes the evolution of spin polarization.
Spin depolarization is studied by examinating the decay of the initial spin
polarization of the conduction electrons through the D'yakonov-Perel process,
the only relevant relaxation mechanism in III-V crystals. Our results show
that, for electric field amplitude lower than the Gunn field, the dephasing
length shortens with the increasing of the noise intensity. Moreover, a
nonmonotonic behavior of spin depolarization length with the noise correlation
time is found, characterized by a maximum variation for values of noise
correlation time comparable with the dephasing time. Instead, in high field
conditions, we find that, critically depending on the noise correlation time,
external fluctuations can positively affect the relaxation length. The
influence of the inclusion of the electron-electron scattering mechanism is
also shown and discussed.Comment: Published on "Journal of Physics: Condensed Matter" as "Fast Track
Communications", 11 pages, 9 figure
3D printing of optical materials: an investigation of the microscopic properties
3D printing technologies are currently enabling the fabrication of objects
with complex architectures and tailored properties. In such framework, the
production of 3D optical structures, which are typically based on optical
transparent matrices, optionally doped with active molecular compounds and
nanoparticles, is still limited by the poor uniformity of the printed
structures. Both bulk inhomogeneities and surface roughness of the printed
structures can negatively affect the propagation of light in 3D printed optical
components. Here we investigate photopolymerization-based printing processes by
laser confocal microscopy. The experimental method we developed allows the
printing process to be investigated in-situ, with microscale spatial
resolution, and in real-time. The modelling of the photo-polymerization
kinetics allows the different polymerization regimes to be investigated and the
influence of process variables to be rationalized. In addition, the origin of
the factors limiting light propagation in printed materials are rationalized,
with the aim of envisaging effective experimental strategies to improve optical
properties of printed materials.Comment: 8 pages, 3 figure
- …
