23,109 research outputs found
Zero gravity apparatus Patent
Zero gravity apparatus utilizing pneumatic decelerating means to create payload subjected to zero gravity conditions by dropping its heigh
Quarkonia in Hamiltonian Light-Front QCD
A constituent parton picture of hadrons with logarithmic confinement
naturally arises in weak coupling light-front QCD. Confinement provides a mass
gap that allows the constituent picture to emerge. The effective renormalized
Hamiltonian is computed to , and used to study charmonium and
bottomonium. Radial and angular excitations can be used to fix the coupling
, the quark mass , and the cutoff . The resultant hyperfine
structure is very close to experiment.Comment: 9 pages, 1 latex figure included in the text. Published version (much
more reader-friendly); corrected error in self-energ
Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED
We study the part of the renormalized, cutoff QED light-front Hamiltonian
that does not change particle number. The Hamiltonian contains interactions
that must be treated in second-order bound state perturbation theory to obtain
hyperfine structure. We show that a simple unitary transformation leads
directly to the familiar Breit-Fermi spin-spin and tensor interactions, which
can be treated in degenerate first-order bound-state perturbation theory, thus
simplifying analytic light-front QED calculations. To the order in momenta we
need to consider, this transformation is equivalent to a Melosh rotation. We
also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil
Initial bound state studies in light-front QCD
We present the first numerical QCD bound state calculation based on a
renormalization group-improved light-front Hamiltonian formalism. The QCD
Hamiltonian is determined to second order in the coupling, and it includes
two-body confining interactions. We make a momentum expansion, obtaining an
equal-time-like Schrodinger equation. This is solved for quark-antiquark
constituent states, and we obtain a set of self-consistent parameters by
fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include
Analytic Treatment of Positronium Spin Splittings in Light-Front QED
We study the QED bound-state problem in a light-front hamiltonian approach.
Starting with a bare cutoff QED Hamiltonian, , with matrix elements
between free states of drastically different energies removed, we perform a
similarity transformation that removes the matrix elements between free states
with energy differences between the bare cutoff, , and effective
cutoff, \lam (\lam < \Lam). This generates effective interactions in the
renormalized Hamiltonian, . These effective interactions are derived
to order in this work, with . is renormalized
by requiring it to satisfy coupling coherence. A nonrelativistic limit of the
theory is taken, and the resulting Hamiltonian is studied using bound-state
perturbation theory (BSPT). The effective cutoff, \lam^2, is fixed, and the
limit, 0 \longleftarrow m^2 \alpha^2\ll \lam^2 \ll m^2 \alpha \longrightarrow
\infty, is taken. This upper bound on \lam^2 places the effects of
low-energy (energy transfer below \lam) emission in the effective
interactions in the sector. This lower bound on \lam^2
insures that the nonperturbative scale of interest is not removed by the
similarity transformation. As an explicit example of the general formalism
introduced, we show that the Hamiltonian renormalized to reproduces
the exact spectrum of spin splittings, with degeneracies dictated by rotational
symmetry, for the ground state through . The entire calculation is
performed analytically, and gives the well known singlet-triplet ground state
spin splitting of positronium, . We discuss remaining
corrections other than the spin splittings and how they can be treated in
calculating the spectrum with higher precision.Comment: 46 pages, latex, 3 Postscript figures included, section on remaining
corrections added, title changed, error in older version corrected, cutoff
placed in a windo
Understanding the truth about subjectivity
Results of two experiments show children’s understanding of diversity in personal preference is incomplete. Despite acknowledging diversity, in Experiment 1(N=108), 6-
and 8-year-old children were less likely than adults to see preference as a legitimate basis for personal tastes and more likely to say a single truth could be found about a matter of taste. In Experiment 2 (N=96), 7- and 9-year-olds were less likely than 11- and 13-yearolds to say a dispute about a matter of preference might not be resolved. These data suggest that acceptance of the possibility of diversity does not indicate an adult-like understanding of subjectivity. An understanding of the relative emphasis placed on objective and subjective factors in different contexts continues to develop into adolescence
Asymptotic Freedom and Bound States in Hamiltonian Dynamics
We study a model of asymptotically free theories with bound states using the
similarity renormalization group for hamiltonians. We find that the
renormalized effective hamiltonians can be approximated in a large range of
widths by introducing similarity factors and the running coupling constant.
This approximation loses accuracy for the small widths on the order of the
bound state energy and it is improved by using the expansion in powers of the
running coupling constant. The coupling constant for small widths is order 1.
The small width effective hamiltonian is projected on a small subset of the
effective basis states. The resulting small matrix is diagonalized and the
exact bound state energy is obtained with accuracy of the order of 10% using
the first three terms in the expansion. We briefly describe options for
improving the accuracy.Comment: plain latex file, 15 pages, 6 latex figures 1 page each, 1 tabl
Using the Zadoks growth scale
The Zadoks growth scale, which is already used overseas as an aid to better crop management, is gradually being adopted in crop production in Western Australia.
By using the scale grain growers are able to identify the various stages of crop development, particularily those growth stages that are closely related to practices such as crop spraying where treatment too early or too late may be ineffective or damaging
Strong Ramsey Games in Unbounded Time
For two graphs and the strong Ramsey game on the
board and with target is played as follows. Two players alternately
claim edges of . The first player to build a copy of wins. If none of
the players win, the game is declared a draw. A notorious open question of Beck
asks whether the first player has a winning strategy in
in bounded time as . Surprisingly, in a recent paper Hefetz
et al. constructed a -uniform hypergraph for which they proved
that the first player does not have a winning strategy in
in bounded time. They naturally ask
whether the same result holds for graphs. In this paper we make further
progress in decreasing the rank.
In our first result, we construct a graph (in fact )
and prove that the first player does not have a winning strategy in
in bounded time. As an application of this
result we deduce our second result in which we construct a -uniform
hypergraph and prove that the first player does not have a winning
strategy in in bounded time. This improves the
result in the paper above.
An equivalent formulation of our first result is that the game
is a draw. Another reason for interest
on the board is a folklore result that the disjoint
union of two finite positional games both of which are first player wins is
also a first player win. An amusing corollary of our first result is that at
least one of the following two natural statements is false: (1) for every graph
, is a first player win; (2) for every graph
if is a first player win, then
is also a first player win.Comment: 18 pages, 46 figures; changes: fully reworked presentatio
Spin wave spectrum of the quantum ferromagnet on the pyrochlore lattice Lu2V2O7
Neutron inelastic scattering has been used to probe the spin dynamics of the
quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu2V2O7. Well-defined
spin waves are observed at all energies and wavevectors, allowing us to
determine the parameters of the Hamiltonian of the system. The data are found
to be in excellent overall agreement with a minimal model that includes a
nearest- neighbour Heisenberg exchange J = 8:22(2) meV and a
Dzyaloshinskii-Moriya interaction (DMI) D =1:5(1) meV. The large DMI term
revealed by our study is broadly consistent with the model developed by Onose
et al. to explain the magnon Hall effect they observed in Lu2V2O7 [1], although
our ratio of D=J = 0:18(1) is roughly half of their value and three times
larger than calculated by ab initio methods [2].Comment: 5 pages, 4 figure
- …