150 research outputs found
Risk and Response-Adapted Treatment in Multiple Myeloma
Myeloma therapeutic strategies have been adapted to patients' age and comorbidities for a long time. However, although cytogenetics and clinical presentations (plasmablastic cytology; extramedullary disease) are major prognostic factors, until recently, all patients received the same treatment whatever their initial risk. No strong evidence allows us to use a personalized treatment according to one cytogenetic abnormality in newly diagnosed myeloma. Retrospective studies showed a benefit of a double autologous transplant in high-risk cytogenetics according to the International Myeloma Working Group definition (t(4;14), t(14;16) or del(17p)). Moreover, this definition has to be updated since other independent abnormalities, namely gain 1q, del(1p32), and trisomies 5 or 21, as well as TP53 mutations, are also prognostic. Another very strong predictive tool is the response to treatment assessed by the evaluation of minimal residual disease (MRD). We are convinced that the time has come to use it to adapt the strategy to a dynamic risk. Many trials are ongoing to answer many questions: when and how should we adapt the therapy, its intensity and duration. Nevertheless, we also have to take into account the clinical outcome for one patient, especially adverse events affecting his or her quality of life and his or her preferences for continuous/fixed duration treatment
Subgroup analysis of ICARIA-MM study in relapsed/refractory multiple myeloma patients with high-risk cytogenetics
Treatment benefit in multiple myeloma (MM) patients with high-risk cytogenetics remains suboptimal. The phase 3 ICARIA-MM trial (NCT02990338) showed that isatuximab plus pomalidomide-dexamethasone prolongs median progression-free survival (mPFS) in patients with relapsed/refractory MM (RRMM). This subgroup analysis of ICARIA-MM compared the benefit of isatuximab in high-risk [defined by the presence of del(17p), t(4;14) or t(14;16)] versus standard-risk patients. The efficacy of isatuximab in patients with gain(1q21) abnormality was also assessed in a retrospective subgroup analysis. In ICARIA-MM, 307 patients received isatuximab-pomalidomide-dexamethasone (n = 154) or pomalidomide-dexamethasone (n = 153). Isatuximab (10 mg/kg intravenously) was given weekly in the first 28-day cycle, and every other week thereafter. Standard pomalidomide-dexamethasone doses were given. Isatuximab-pomalidomide-dexamethasone improved mPFS (7 center dot 5 vs 3 center dot 7 months; HR, 0 center dot 66; 95% CI, 0 center dot 33-1 center dot 28) and overall response rate (ORR, 50 center dot 0% vs 16 center dot 7%) in high-risk patients. In patients with isolated gain(1q21), isatuximab addition improved mPFS (11 center dot 2 vs 4 center dot 6 months; HR, 0 center dot 50; 95% CI, 0 center dot 28-0 center dot 88) and ORR (53 center dot 6% vs 27 center dot 6%). More grade >= 3 adverse events occurred in high-risk patients receiving isatuximab (95 center dot 7%) versus the control group (67 center dot 6%); however, isatuximab did not increase events leading to discontinuation or treatment-related mortality. Isatuximab-pomalidomide-dexamethasone provides a consistent benefit over pomalidomide-dexamethasone treatment in RRMM patients regardless of cytogenetic risk
Health-Related Quality of Life in Transplant-Ineligible Patients With Newly Diagnosed Multiple Myeloma: Findings From the Phase III MAIA Trial.
PURPOSE: To evaluate the effects of daratumumab, lenalidomide, and dexamethasone (D-Rd) versus lenalidomide and dexamethasone (Rd) on patient-reported outcomes (PROs) in the phase III MAIA study. PATIENTS AND METHODS: PROs were assessed on the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30-item and the EuroQol 5-dimensional descriptive system at baseline and every 3 months during treatment. By mixed-effects model, changes from baseline are presented as least squares means with 95% CIs. RESULTS: A total of 737 transplant-ineligible (TIE) patients with newly diagnosed multiple myeloma were randomly assigned to D-Rd (n = 368) or Rd (n = 369). Compliance with PRO assessments was high at baseline (> 90%) through month 12 (> 78%) for both groups. European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30-item global health status scores improved from baseline in both groups and were consistently greater with D-Rd at all time points. A global health status benefit was achieved with D-Rd, regardless of age (< 75 and ≥ 75 years), baseline Eastern Cooperative Oncology Group (ECOG) performance status score, or depth of response. D-Rd treatment resulted in significantly greater reduction in pain scores as early as cycle 3 (P = .0007 v Rd); the magnitude of change was sustained through cycle 12. Reductions in pain with D-Rd were clinically meaningful in patients regardless of age, ECOG status, or depth of response. Similarly, PRO improvements were observed with D-Rd and Rd on the EuroQol 5-dimensional descriptive system visual analog scale score. CONCLUSION: D-Rd compared with Rd was associated with faster and sustained clinically meaningful improvements in PROs, including pain, in transplant-ineligible patients with newly diagnosed multiple myeloma regardless of age, baseline ECOG status, or depth of treatment response
LocoMMotion:a prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma
Despite treatment advances, patients with multiple myeloma (MM) often progress through standard drug classes including proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), and anti-CD38 monoclonal antibodies (mAbs). LocoMMotion (ClinicalTrials.gov identifier: NCT04035226) is the first prospective study of real-life standard of care (SOC) in triple-class exposed (received at least a PI, IMiD, and anti-CD38 mAb) patients with relapsed/refractory MM (RRMM). Patients (N = 248; ECOG performance status of 0–1, ≥3 prior lines of therapy or double refractory to a PI and IMiD) were treated with median 4.0 (range, 1–20) cycles of SOC therapy. Overall response rate was 29.8% (95% CI: 24.2–36.0). Median progression-free survival (PFS) and median overall survival (OS) were 4.6 (95% CI: 3.9–5.6) and 12.4 months (95% CI: 10.3–NE). Treatment-emergent adverse events (TEAEs) were reported in 83.5% of patients (52.8% grade 3/4). Altogether, 107 deaths occurred, due to progressive disease (n = 74), TEAEs (n = 19), and other reasons (n = 14). The 92 varied regimens utilized demonstrate a lack of clear SOC for heavily pretreated, triple-class exposed patients with RRMM in real-world practice and result in poor outcomes. This supports a need for new treatments with novel mechanisms of action
Clinical perspectives on the optimal use of lenalidomide plus bortezomib and dexamethasone for the treatment of newly diagnosed multiple myeloma
To improve the outcomes of patients with the otherwise incurable hematologic malignancy of multiple myeloma (MM), a key paradigm includes initial treatment to establish disease control rapidly followed by maintenance therapy to ensure durability of response with manageable toxicity. However, patients’ prognosis worsens after relapse, and the disease burden and drug toxicities are generally more challenging with subsequent lines of therapy. It is therefore particularly important that patients with newly diagnosed multiple myeloma (NDMM) receive optimal frontline therapy. The combination of lenalidomide, bortezomib, and dexamethasone (RVd) has consistently demonstrated a tolerable safety profile with significant and clinically relevant benefit, including deep and durable responses with improved survival in patients with NDMM regardless of their transplant eligibility. Furthermore, comparative studies evaluating this triplet regimen against both doublet and other triplet regimens have established RVd as a standard of care in this setting based upon its remarkable and concordant efficacy. Given the breadth of clinical data, physician familiarity, inclusion in treatment guidelines, and the emerging potential of RVd-containing quadruplet regimens, RVd will likely continue as a key cornerstone of the treatment of NDMM, and its role will therefore likely continue to grow as a therapeutic backbone in the initial treatment of MM
Similar NF-κB Gene Signatures in TNF-α Treated Human Endothelial Cells and Breast Tumor Biopsies
BACKGROUND: Endothelial dysfunction has been implicated in the pathogenesis of diverse pathologies ranging from vascular and immune diseases to cancer. TNF-α is one of the mediators of endothelial dysfunction through the activation of transcription factors, including NF-κB. While HUVEC (macrovascular cells) have been largely used in the past, here, we documented an NF-κB gene signature in TNFα-stimulated microvascular endothelial cells HMEC often used in tumor angiogenesis studies. METHODOLOGY/PRINCIPAL FINDINGS: We measured mRNA expression of 55 NF-κB related genes using quantitative RT-PCR in HUVEC and HMEC. Our study identified twenty genes markedly up-regulated in response to TNFα, including adhesion molecules, cytokines, chemokines, and apoptosis regulators, some of them being identified as TNF-α-inducible genes for the first time in endothelial cells (two apoptosis regulators, TNFAIP3 and TNFRSF10B/Trail R2 (DR5), the chemokines GM-CSF/CSF2 and MCF/CSF1, and CD40 and TNF-α itself, as well as NF-κB components (RELB, NFKB1 or 50/p105 and NFKB2 or p52/p100). For eight genes, the fold induction was much higher in HMEC, as compared to HUVEC. Most importantly, our study described for the first time a connection between NF-κB activation and the induction of most, if not all, of these genes in HMEC as evaluated by pharmacological inhibition and RelA expression knock-down by RNA interference. Moreover, since TNF-α is highly expressed in tumors, we further applied the NF-κB gene signature documented in TNFα-stimulated endothelial cells to human breast tumors. We found a significant positive correlation between TNF and the majority (85 %) of the identified endothelial TNF-induced genes in a well-defined series of 96 (48 ERα positive and 48 ERα negative) breast tumors. CONCLUSION/SIGNIFICANCE: Taken together these data suggest the potential use of this NF-κB gene signature in analyzing the role of TNF-α in the endothelial dysfunction, as well as in breast tumors independently of the presence of ERα
- …