6 research outputs found
High performance aluminum–cerium alloys for high-temperature applications
Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300 °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Finally, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength
Formation of surface roughness on nanocrystalline aluminum samples under straining by molecular dynamics studies
International audienceThe surface roughening of nanocrystalline aluminum samples was investigated by molecular dynamics simulations. Attention was focused on the fact that roughness increases with the grain size and the strain. The elastic-plastic transition was found at around 3.5% strain and a reverse Hall-Petch effect was observed under straining conditions. Then, different strain distributions in grains and grain boundaries at the samples surface was highlighted, yielding to the formation of local roughness. Finally, a linear relationship between the magnitude of roughness and the out-of-plane strain component was found
Thermodynamics and Magnetism of YCo5 Compound Doped with Fe and Ni: An Ab Initio Study
YCo5 permanent magnet exhibits high uniaxial magnetocrystalline anisotropy energy and has a high Curie temperature. These are good properties for a permanent magnet, but YCo5 has a low energy product, which is notably insufficient for a permanent magnet. In order to improve the energy product in YCo5, we suggest replacing cobalt with iron, which has a much bigger magnetic moment. With a combination of density-functional-theory calculations and thermodynamic CALculation of PHAse Diagrams (CALPHAD) modeling, we show that a new magnet, YFe3(Ni1-xCox)2, is thermodynamically stable and exhibits an improved energy product without significant detrimental effects on the magnetocrystalline anisotropy energy or the Curie temperature
Recommended from our members
Additively manufactured β-Ti5553 with laser powder bed fusion: Microstructures and mechanical properties of bulk and lattice parts
Ti5553 (Ti-5Al-5Mo-5V-3Cr wt%) is a titanium alloy widely used for its high strength-to-weight ratio and good formability at elevated temperatures. Unlike Ti-6Al-4V, Ti5553 does not undergo martensitic transformation, preventing cracking of brittle martensite upon rapid cooling. This makes it a strong candidate for additive manufacturing (AM), particularly laser powder bed fusion (L-PBF). L-PBF offers the unique opportunity to make fine lattice structures to reduce component weight. Despite the growing field of AM, there have been limited studies on L-PBF Ti5553 lattices and how their properties differ from the bulk. The present work addresses this knowledge gap by investigating microstructures and properties of L-PBF bulk and lattice parts and the effect of post L-PBF heat treatments. Electron microscopy and mechanical testing show that the high dislocation density formed during L-PBF increases bulk part's yield strength by approximately 100 MPa compared to the conventional alloy. Digital image correlation during compression testing of octet truss lattices reveals a layer-by-layer failure mode. Compared to the bulk, the lattice contains copious ω nanoprecipitation, weaker texture, smaller average grain sizes, and larger content of high-angle grain boundaries. These features elicit differences in Taylor factor distributions for the lattice depending on load direction, underlining challenges in predicting lattice mechanical response based on bulk properties. By examining the processing-structure-property relationships in the bulk and lattice, the present results delineate their microstructural and mechanical differences and establish a benchmark for the future design applications of L-PBF Ti5553.Office of Science24 month embargo; first published 27 February 2024This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
High performance aluminum–cerium alloys for high-temperature applications
Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300 °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Finally, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.</p
Assessment of Mendelian and risk factor genes in Alzheimer disease: a prospective nationwide clinical utility study and recommendations for genetic screening
International audiencePurpose: To assess the likely pathogenic/pathogenic (LP/P) variants rates in Mendelian dementia genes and the moderate-to-strong risk factors rates in patients with Alzheimer disease (AD).Methods: We included 700 patients in a prospective study and performed exome sequencing. A panel of 28 Mendelian and 6 risk-factor genes was interpreted and returned to patients. We built a framework for risk variant interpretation and risk gradation and assessed the detection rates among early-onset AD (EOAD, age of onset (AOO) ≤65 years, n = 608) depending on AOO and pedigree structure and late-onset AD (66 < AOO < 75, n = 92).Results: Twenty-one patients carried a LP/P variant in a Mendelian gene (all with EOAD, 3.4%), 20 of 21 affected APP, PSEN1, or PSEN2. LP/P variant detection rates in EOAD ranged from 1.7% to 11.6% based on AOO and pedigree structure. Risk factors were found in 69.5% of the remaining 679 patients, including 83 (12.2%) being heterozygotes for rare risk variants, in decreasing order of frequency, in TREM2, ABCA7, ATP8B4, SORL1, and ABCA1, including 5 heterozygotes for multiple rare risk variants, suggesting non-monogenic inheritance, even in some autosomal-dominant-like pedigrees.Conclusion: We suggest that genetic screening should be proposed to all EOAD patients and should no longer be prioritized based on pedigree structure