3,956 research outputs found
Sequence analysis of a DNA fragment from Sinorhizobium fredii USDA257 which extends the nitrogen fixation host range of Rhizobium species NGR234 to soybean, Glycine max (L.) Merr cultivar Peking
A fragment of DNA (pBTBX) from the genome ofSinorhizobium fredii USDA257 was sequenced by shotgun strategy to identify the potential genes which enabled theRhizobium species NGR234 to fix nitrogen on soybean,Glycine max (L.) Merr cv. Peking. The total length of the cosmid is 32,824 base pairs with a GC content of 61%. A 29 open reading frames (ORF) were identified representing 71.8% (23,574 bp) of the cosmid. Out of these ORF, 96.5% (22,749 bp) were identical and similar to reported and hypothetical genes and proteins. The remaining 3.5% (825 bp) had no apparent similarity to any genes in the data base. Gene and gene products found on the DNA fragment include those involved in the synthesis of FeMo component of nitrogenase, regulation of nitrogen fixation, transport of amino acids and sugars, chemotaxis and transcriptional regulatio
In Situ Identification of Plant-Invasive Bacteria with MALDI-TOF Mass Spectrometry
Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues
Reversible NanoparticleâMicelle Transformation of Ionic LiquidâSulfonatocalix[6]arene Aggregates
The effect of temperature and NaCl concentration variations on the self-assembly of 1-methyl-3- tetradecylimidazolium (C14mim+) and 4-sulfonatocalix[6]-
arene (SCX6) was studied by dynamic light scattering and isothermal calorimetric methods at pH 7. Inclusion complex formation promoted the self-assembly to spherical nanoparticles (NP), which transformed to supramolecular micelles (SM) in the presence of NaCl. Highly reversible, temperature-responsive behavior was observed, and the conditions of the NPâSM transition could be tuned by the alteration of C14mim+:SCX6 mixing ratio and NaCl concentration. The association to SM was always exothermic with enthalpy independent of the amount of NaCl. In contrast, NPs were produced in endothermic process at low temperature, and the enthalpy change became less favorable upon increase in NaCl concentration. The NP formation was accompanied by negative molar heat capacity change, which further diminished when NaCl concentration was raised
Quantitative Multicolor Compositional Imaging Resolves Molecular Domains in Cell-Matrix Adhesions
Background: Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined. Methodology/Principal Findings: We present here a compositional imaging approach for the analysis and display of multicomponent compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focaladhesion-associated complexes to Rho-kinase inhibition. Conclusions/Significance: Multicolor compositional imaging resolves ââmolecular signaturesâ â characteristic to focaladhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional ââcontents-resolvedâ â dimensions. We propose that compositional imaging can serve as
Formation of the in Two-Photon Collisions at LEP
The two-photon width of the meson has been
measured with the L3 detector at LEP. The is studied in the decay
modes , KK, KK,
KK, , , and
using an integrated luminosity of 140 pb at GeV and
of 52 pb at GeV. The result is
(BR) keV. The dependence of the cross section is studied for
GeV. It is found to be better described by a Vector Meson
Dominance model form factor with a J-pole than with a -pole. In addition,
a signal of events is observed at the mass. Upper limits
for the two-photon widths of the , , and are also
given
Search for Scalar Leptons in e+e- collisions at \sqrt{s}=189 GeV
We report the result of a search for scalar leptons in e+e- collisions at 189
GeV centre-of-mass energy at LEP. No evidence for such particles is found in a
data sample of 176 pb^{-1}. Improved upper limits are set on the production
cross sections for these new particles. New exclusion contours in the parameter
space of the Minimal Supersymmetric Standard Model are derived, as well as new
lower limits on the masses of these supersymmetric particles. Under the
assumptions of common gaugino and scalar masses at the GUT scale, we set an
absolute lower limit on the mass of the lightest scalar electron of 65.5 Ge
Search for Low Scale Gravity Effects in e+e- Collisions at LEP
Recent theories propose that quantum gravity effects may be observable at LEP
energies via gravitons that couple to Standard Model particles and propagate
into extra spatial dimensions. The associated production of a graviton and a
photon is searched for as well as the effects of virtual graviton exchange in
the processes: e+e- -> gamma gamma, ZZ, WW, mu mu, tau tau, qq and ee No
evidence for this new interaction is found in the data sample collected by the
L3 detector at LEP at centre-of-mass energies up to 183 GeV. Limits close to 1
TeV on the scale of this new scenario of quantum gravity are set
Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV
The pair production of Z bosons is studied using the data collected by the L3
detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189
GeV. All the visible final states are considered and the cross section of this
process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final
states containing b quarks are enhanced by a dedicated selection and their
production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02
(syst.) pb. Both results are in agreement with the Standard Model predictions.
Limits on anomalous couplings between neutral gauge bosons are derived from
these measurements
- âŠ