5 research outputs found
Stem Cells for Huntington's Disease (SC4HD): An International Consortium to Facilitate Stem Cell-Based Therapy for Huntington's Disease
Huntington's disease (HD) research is entering an exciting phase, with new approaches such as huntingtin lowering strategies and cell therapies on the horizon. Technological advances to direct the differentiation of stem cells to desired neural types have opened new strategies for restoring damaged neuronal circuits in HD. However, challenges remain in the implementation of cell therapy approaches for patients suffering from HD. Cell therapies, together with other invasive approaches including allele specific oligonucleotides (ASOs) and viral delivery of huntingtin-lowering agents, require direct delivery of the therapeutic agents locally into the brain or cerebrospinal fluid. Delivering substances directly into the brain is complex and presents multiple challenges, including those related to regulatory requirements, safety and efficacy, surgical instrumentation, trial design, patient profiles, and selection of suitable and sensitive primary and secondary outcomes. In addition, production of clinical grade cell-based medicinal products also requires adherence to regulatory standards with extensive quality control of the protocols and cell products across different laboratories and production centers. Currently, there is no consensus on how best to address these challenges. Here we describe the formation of Stem Cells For Huntington's Disease (SC4HD: https://www.sc4hd.org/), a network of researchers and clinicians working to develop guidance and greater standardization for the HD field for stem cell based transplantation therapy for HD with a mission to work to develop criteria and guidance for development of a neural intra-cerebral stem cell-based therapy for HD
Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder
There has been substantial progress in the development of regenerative medicine strategies for central nervous system disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment.
Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington’s disease as a specific example, and suggest potential strategies to address these challenges. Huntington’s disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington’s disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells For Huntington’s Disease and the European Huntington’s Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance, and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington’s disease
Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder.
There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease
Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder.
There has been substantial progress in the development of regenerative medicine strategies for central nervous system disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells For Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance, and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease
Stem Cells for Huntington’s Disease (SC4HD): An International Consortium to Facilitate Stem Cell-Based Therapy for Huntington’s Disease
International audienceHuntington’s disease (HD) research is entering an exciting phase, with new approaches such as huntingtin lowering strategies and cell therapies on the horizon. Technological advances to direct the differentiation of stem cells to desired neural types have opened new strategies for restoring damaged neuronal circuits in HD. However, challenges remain in the implementation of cell therapy approaches for patients suffering from HD. Cell therapies, together with other invasive approaches including allele specific oligonucleotides (ASOs) and viral delivery of huntingtin-lowering agents, require direct delivery of the therapeutic agents locally into the brain or cerebrospinal fluid. Delivering substances directly into the brain is complex and presents multiple challenges, including those related to regulatory requirements, safety and efficacy, surgical instrumentation, trial design, patient profiles, and selection of suitable and sensitive primary and secondary outcomes. In addition, production of clinical grade cell-based medicinal products also requires adherence to regulatory standards with extensive quality control of the protocols and cell products across different laboratories and production centers. Currently, there is no consensus on how best to address these challenges. Here we describe the formation of Stem Cells For Huntington’s Disease (SC4HD: https://www.sc4hd.org/), a network of researchers and clinicians working to develop guidance and greater standardization for the HD field for stem cell based transplantation therapy for HD with a mission to work to develop criteria and guidance for development of a neural intra-cerebral stem cell-based therapy for HD