27 research outputs found

    Level Anticrossing of Impurity States in Semiconductor Nanocrystals

    Get PDF
    The size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked—the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal. The coupling of impurity states, which leads to the anticrossing, can be induced by interactions with elementary excitations residing inside the nanocrystal or an external electromagnetic field. We formulate physical conditions that allow a straightforward interpretation of level anticrossings in the nanocrystal energy spectrum and an accurate estimation of the states\u27 coupling strength

    Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) is regarded as a versatile tool for studying the composition and structure of matter. This work has studied the preparation of a SERS substrate based on a self-assembling plasmonic nanoparticle film (SPF) in a polymer matrix. Several synthesis parameters for the SPF are investigated, including the size of the particles making up the film and the concentration and type of the self-assembling agent. The result of testing systems with different characteristics is discussed using a model substance (pseudo isocyaniniodide). These models can be useful in the study of biology and chemistry. Research results contain the optimal parameters for SPF synthesis, maximizing the SERS signal. The optimal procedure for SPF assembly is determined and used for the synthesis of composite SPFs within different polymer matrices. SPF in a polymer matrix is necessary for the routine use of the SERS substrate for various types of analytes, including solid samples or those sensitive to contamination. Polystyrene, polyvinyl alcohol (PVA), and polyethylene are investigated to obtain a polymer matrix for SPF, and various methods of incorporating SPF into a polymer matrix are being explored. It is found that films with the best signal enhancement and reproducibility were obtained in polystyrene. The minimum detectable concentration for the SERS substrate obtained is equal to 10 10 M We prepared a SERS substrate with an analytical enhancement factor of 2.7 104, allowing an increase in the detection sensitivity of analyte solutions of five orders of magnitude

    The Size Ellect on the Infrared Spectra of Condensed Media Under Conditions of ID, 2D and 3D Dielectric Confinement

    Get PDF
    A general expression for the dielectric loss spectrum of an absorbing composite medium was obtained from a Maxwell-Garnett general equation. This expression was simplified for the cases of one, two and three dimensional dielectric confinement in both ordered and disordered thin layers, rods (wires) and spheres of absorbing medium which are considered as mesoparticles or mesoscopic molecules. This theoretical approach was verified experimentally using high purity organic liquids with strong absorption bands in the infrared range. Three organic liquids, namely benzene, chloroform and carbon disulphide, were measured in various dielectric confinement configurations using Fourier Transform Infrared (FTIR) spectroscopy with a Grazing Angle attachment GATRTM. A significant shift of the resonant absorption band of liquid mesoparticles was observed for various dielectric confinement geometries which is in good agreement with theoretical predictions. Possible applications of this work include investigations of industrial smoke, toxic aerosols and liquid droplets

    Zebrafish screen identifies novel compound with selective toxicity against leukemia

    Get PDF
    To detect targeted antileukemia agents we have designed a novel, high-content in vivo screen using genetically engineered, T-cell reporting zebrafish. We exploited the developmental similarities between normal and malignant T lymphoblasts to screen a small molecule library for activity against immature T cells with a simple visual readout in zebrafish larvae. After screening 26 400 molecules, we identified Lenaldekar (LDK), a compound that eliminates immature T cells in developing zebrafish without affecting the cell cycle in other cell types. LDK is well tolerated in vertebrates and induces long-term remission in adult zebrafish with cMYC-induced T-cell acute lymphoblastic leukemia (T-ALL). LDK causes dephosphorylation of members of the PI3 kinase/AKT/mTOR pathway and delays sensitive cells in late mitosis. Among human cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, including therapy-refractory B-ALL and chronic myelogenous leukemia samples, and inhibits growth of human T-ALL xenografts. This work demonstrates the utility of our method using zebrafish for antineoplastic candidate drug identification and suggests a new approach for targeted leukemia therapy. Although our efforts focused on leukemia therapy, this screening approach has broad implications as it can be translated to other cancer types involving malignant degeneration of developmentally arrested cells

    One-Dimensional Multi-Channel Photonic Crystal Resonators Based on Silicon-On-Insulator With High Quality Factor

    No full text
    We have theoretically and experimentally demonstrated a Fabry-Pérot (FP) resonators based on a Si-air one-dimensional photonic crystal (1D PhC) with coupled triple-cavity modes (or defects). These defects are obtained by filling selected air channels in the 1D PhC with an actively reconfigurable fluid. Simulations of the optical properties of these FP resonators were performed in the wide infrared spectral range. It is shown that by changing the refractive index, nc, of the fluid simultaneously in all three channels, a set of narrow triple resonance peaks can be obtained within wide stop-bands of different order in the infrared range. In addition, at certain values of nc, splitting of the triple resonance peaks into a doublet and a single peak with a significantly larger quality factor, Q = 21,200, occurs. Prototype devices based on Silicon-On-Insulator platform were fabricated and characterized by electro-optical and spectroscopic measurements. The electro-optical measurements demonstrate the possibility of refractive index manipulation of the filler in the FP channels individually or simultaneously. Spectroscopic measurements performed in the range 1540–1630 nm using fiber-coupling confirm the presence of triple resonance peaks in the 3rd stop-band in the absence of an electric field applied to the FP channels. At an applied voltage of 10 V to the middle channel, an increase of Q to 3720 in the single peak is registered

    Preparation and Characterisation of Metallorganic Precursors Derived Iron Oxides on Porous Silicon Layers

    Get PDF
    Porous silicon has generated interest in scientific community after its photoluminescence discovery and thereafter, research was focused on to the chemical functionalization of silicon and subsequent anchoring of nanoparticles onto silicon surface. In the present work, the porous silicon has been effectively modified with magnetic nanoparticles which were prepared through metallorganic approach. The as-fabricated magnetic-porous silicon composites were characterised using FTIR and Raman spectroscopies, Scanning Electron Microscopy (SEM) as well as magnetic measurements

    Investigations into the electrochemical etching process of p-type silicon using ethanol-surfactant solutions

    Get PDF
    In this work, the electrochemical etching of p-type silicon was performed in aqueous ethanol-surfactant solutions and the dependence of morphology and luminescent properties of porous silicon with respect to the etching parameters and silicon resistivities have been studied. The obtained porous silicon structures have been studied using various characterisation techniques such as SEM (Scanning Electron Microscopy) and Photoluminescence (PL) spectroscopy

    The Influence of Light Beam Convergence on the Stop-Bands of a One-Dimensional Photonic Crystal

    Get PDF
    The influence of beam convergence on the photonic band-gaps, or stop-bands (SBs), of onedimensional photonic crystals (1D PCs) is investigated. The investigation is based on an analysis of the gap map obtained from reflection spectra, calculated by the transfer matrix method for various angles of light incidence, φ, The calculated data is compared with reflection spectra taken using Fourier Transform Infrared microspectroscopy. It was found that the introduction of the parameter, Δφ to account for the focused light beam, for angles up to 20°, has little effect on the first, or lowest SB and the SBs adjacent to it. However, an increase in the order of the SB causes an increase in the influence of this parameter

    Polarized Raman Spectroscopy and Chemometric Analysis of Micro-crystalline Silicon for Solar Cells

    No full text
    Micro-crystalline silicon (μc-Si:H) is currently under extensive investigation due to it’s applications in solar cells. The crystalline content and structural properties of μc-Si:H can be determined from several characterisation techniques such as high-resolution transmission electron microscopy (HRTEM), X-Ray diffraction (XRD), spectroscopic ellipsometry (SE) and Raman spectroscopy. In this paper a solution is proposed to reduce the effect of second order phonons on the Raman spectra of μc-Si:H for evaluation of crystalline volume fraction χc
    corecore