3 research outputs found

    The soil microbiome of <i>Lolium perenne</i> L. depends on host genotype, is modified by nitrogen level and varies across season

    Get PDF
    Genotype by environment interactions (G × E) are frequently observed in herbage production. Understanding the underlying biological mechanisms is important for achieving stable and predictive outputs across production environments. The microbiome is gaining increasing attention as a significant contributing factor to G × E. Here, we focused on the soil microbiome of perennial ryegrass (Lolium perenne L.) grown under field conditions and investigated the soil microbiome variation across different ryegrass varieties to assess whether environmental factors, such as seasonality and nitrogen levels, affect the microbial community. We identified bacteria, archaea, and fungi operational taxonomic units (OTUs) and showed that seasonality and ryegrass variety were the two factors explaining the largest fraction of the soil microbiome diversity. The strong and significant variety-by-treatment-by-seasonal cut interaction for ryegrass dry matter was associated with the number of unique OTUs within each sample. We identified seven OTUs associated with ryegrass dry matter variation. An OTU belonging to the Solirubrobacterales (Thermoleophilales) order was associated with increased plant biomass, supporting the possibility of developing engineered microbiomes for increased plant yield. Our results indicate the importance of incorporating different layers of biological data, such as genomic and soil microbiome data to improve the prediction accuracy of plant phenotypes grown across heterogeneous environments

    The soil microbiome of Lolium perenne L. depends on host genotype, is modified by nitrogen level and varies across season

    No full text
    Abstract Genotype by environment interactions (G × E) are frequently observed in herbage production. Understanding the underlying biological mechanisms is important for achieving stable and predictive outputs across production environments. The microbiome is gaining increasing attention as a significant contributing factor to G × E. Here, we focused on the soil microbiome of perennial ryegrass (Lolium perenne L.) grown under field conditions and investigated the soil microbiome variation across different ryegrass varieties to assess whether environmental factors, such as seasonality and nitrogen levels, affect the microbial community. We identified bacteria, archaea, and fungi operational taxonomic units (OTUs) and showed that seasonality and ryegrass variety were the two factors explaining the largest fraction of the soil microbiome diversity. The strong and significant variety-by-treatment-by-seasonal cut interaction for ryegrass dry matter was associated with the number of unique OTUs within each sample. We identified seven OTUs associated with ryegrass dry matter variation. An OTU belonging to the Solirubrobacterales (Thermoleophilales) order was associated with increased plant biomass, supporting the possibility of developing engineered microbiomes for increased plant yield. Our results indicate the importance of incorporating different layers of biological data, such as genomic and soil microbiome data to improve the prediction accuracy of plant phenotypes grown across heterogeneous environments

    Integration of DNA Methylation and Transcriptome Data Improves Complex Trait Prediction in Hordeum vulgare

    No full text
    Whole-genome multi-omics profiles contain valuable information for the characterization and prediction of complex traits in plants. In this study, we evaluate multi-omics models to predict four complex traits in barley (Hordeum vulgare); grain yield, thousand kernel weight, protein content, and nitrogen uptake. Genomic, transcriptomic, and DNA methylation data were obtained from 75 spring barley lines tested in the RadiMax semi-field phenomics facility under control and water-scarce treatment. By integrating multi-omics data at genomic, transcriptomic, and DNA methylation regulatory levels, a higher proportion of phenotypic variance was explained (0.72&ndash;0.91) than with genomic models alone (0.55&ndash;0.86). The correlation between predictions and phenotypes varied from 0.17&ndash;0.28 for control plants and 0.23&ndash;0.37 for water-scarce plants, and the increase in accuracy was significant for nitrogen uptake and protein content compared to models using genomic information alone. Adding transcriptomic and DNA methylation information to the prediction models explained more of the phenotypic variance attributed to the environment in grain yield and nitrogen uptake. It furthermore explained more of the non-additive genetic effects for thousand kernel weight and protein content. Our results show the feasibility of multi-omics prediction for complex traits in barley
    corecore