15 research outputs found

    Introduction of Ca\u3csup\u3e2+\u3c/sup\u3e-binding Amino-acid Sequence Into the T4 Lysozyme

    No full text
    The 51–62 loop of T4 phage lysozyme was altered by site-directed mutagenesis to obtain maximal homology with the typical EF-hand motif. A Ca2+-binding site was designed and created by replacing both Gly-51 and Asn-53 with aspartic acid. The mutant T4 lysozyme (G51D/N53D) was expressed in Escherichia coli. The activity of the G51D/N53D-mutant was about 60% of that of the wild-type protein. This mutant can bind Ca2+ ions specifically, while the effective dissociation constant was essentially greater than that of the EF-hand proteins. Stability of the G51D/N53D-mutant apo-form to urea- or temperature-induced denaturation was the same as that of the wild-type protein. In the presence of Ca2+ ions in solution the stability of the mutant T4 phage lysozyme was less than that of the wild-type protein. It is suggested that the binding of Ca2+ by the mutant is accompanied by the considerable conformational changes in the ‘corrected’ loop, which can lead to the Ca2+-induced destabilization of the protein

    Metal-controlled Interdomain Cooperativity in Parvalbumins

    No full text
    Conformational behavior of five homologous proteins, parvalbumins (PAs) from northern pike (α and β isoforms), Baltic cod, and rat (α and β isoforms), was studied by scanning calorimetry, circular dichroism, and bis-ANS fluorescence. The mechanism of the temperature-induced denaturation of these proteins depends dramatically on both the peculiarities of their amino acid sequences and on their interaction with metal ions. For example, the pike α-PA melting can be described by two successive two-state transitions with mid-temperatures of 90 and 120 °C, suggesting the presence of two thermodynamic domains. The intermediate state populated at the end of the first transition was shown to bind Ca2+ ions, and was characterized by the largely preserved secondary structure and increased solvent exposure of hydrophobic groups. Mg2+- and Na+-loaded forms of pike α-PA demonstrated a single two-state transition. Therefore, the mechanism of the PA thermal denaturation is controlled by metal binding. It ranged from the absence of detectable first-order transition (apo-form of pike PA), to the two-state transition (e.g., Mg2+- and Na+-loaded forms of pike α-PA), to the more complex mechanisms (Ca2+-loaded PAs) involving at least one partially folded intermediate. Analysis of isolated cavities in the protein structures revealed that the interface between the CD and EF subdomains of Ca2+-loaded pike α-PA is much more loosely packed compared with PAs manifesting single heat-sorption peak. The impairment of interactions between CD and EF subdomains may cause a loss of structural cooperativity and appearance of two separate thermodynamic domains. One more peculiar feature of pike α-PA is that depending on its interactions with metal ions, it can be an intrinsically disordered protein (apo-form), an ordered protein of mesophilic (Na+-bound state), thermophilic (Mg2+-form), or even of the hyperthermophilic origin (Ca2+-form)

    Mouse S100G Protein Exhibits Properties Characteristic of a Calcium Sensor

    No full text
    Bovine S100 G (calbindin D9k, small Ca2+-binding protein of the EF-hand superfamily) is considered as a calcium buffer protein; i.e., the binding of Ca2+ practically does not change its general conformation. A set of experimental approaches has been used to study structural properties of apo- and Ca2+-loaded forms of mouse S100 G (81.4% identity in amino acid sequence with bovine S100 G). This analysis revealed that, in contrast to bovine S100 G, the removal of calcium ions increases α-helices content of mouse S100 G protein and enhances its accessibility to digestion by α-chymotrypsin. Furthermore, mouse apo-S100 G is characterized by a decreased surface hydrophobicity and reduced tendency for oligomerization. Such behavior is typical of calcium sensor proteins. Apo-state of mouse S100 G still has rather compact structure, which can be cooperatively unfolded by temperature and GdnHCl. Computational analysis of amino acid sequences of S100 G proteins shows that these proteins could be in a disordered state upon a removal of the bound calcium ions. The experimental data show that, although mouse apo-S100 G is flexible compared to the Ca2+-loaded state, the apo-form is not completely disordered and preserves some cooperatively meting structure. The origin of the unexpectedly high stability of mouse S100 G can be rationalized by an exceptionally strong association of its N- and C-terminal parts containing the EF-hands I and II, respectively

    Specific Cytokines of Interleukin-6 Family Interact with S100 Proteins

    No full text
    Cytokines of interleukin-6 (IL-6) family are important signaling proteins involved in various physiological and pathological processes. Earlier, we described interactions between IL-11 and S100P/B proteins from the family of S100 proteins engaged in the pathogenesis of numerous diseases. We probed here interactions between seven IL-6 family cytokines (IL-6, IL-11, OSM, LIF, CNTF, CT-1, and CLCF1) and fourteen S100 proteins (S100A1/A4/A6/A7/A8/A9/A10/A11/A12/A13/A14/A15/B/P). Surface plasmon resonance spectroscopy revealed formation of calcium-dependent complexes between IL-11, OSM, CNTF, CT-1, and CLCF1 and distinct subsets of S100A1/A6/B/P proteins with equilibrium dissociation constants of 19 nM – 12 µM. The existence of a network of interactions between Ca2+-loaded S100 proteins and IL-6 family cytokines suggest regulation of these cytokines by the extracellular forms of S100 proteins

    Analyzing the Structural and Functional Roles of Residues from the ‘black’ and ‘gray’ Clusters of Human S100P Protein

    No full text
    Two highly conserved structural motifs observed in members of the EF-hand family of calcium binding proteins. The motifs provide a supporting scaffold for the Ca2+ binding loops and contribute to the hydrophobic core of the EF-hand domain. Each structural motif represents a cluster of three amino acids called cluster I (‘black’ cluster) and cluster II (‘grey’ cluster). Cluster I is more conserved and mostly incorporates aromatic amino acids. In contrast, cluster II is noticeably less conserved and includes a mix of aromatic, hydrophobic, and polar amino acids of different sizes. In the human calcium binding S100 P protein, these ‘black’ and ‘gray’ clusters include residues F15, F71, and F74 and L33, L58, and K30, respectively. To evaluate the effects of these clusters on structure and functionality of human S100 P, we have performed Ala scanning. The resulting mutants were studied by a multiparametric approach that included circular dichroism, scanning calorimetry, dynamic light scattering, chemical crosslinking, and fluorescent probes. Spectrofluorimetric Ca2+-titration of wild type S100 P showed that S100 P dimer has 1–2 strong calcium binding sites (K1 = 4 × 106 M−1) and two cooperative low affinity (K2 = 4 × 104 M−1) binding sites. Similarly, the S100 P mutants possess two types of calcium binding sites. This analysis revealed that the alanine substitutions in the clusters I and II caused comparable changes in the S100 P functional properties. However, analysis of heat- or GuHCl-induced unfolding of these proteins showed that the alanine substitutions in the cluster I caused notably more pronounced decrease in the protein stability compared to the changes caused by alanine substitutions in the cluster II. Opposite to literature data, the F15 A substitution did not cause the S100 P dimer dissociation, indicating that F15 is not crucial for dimer stability. Overall, similar to parvalbumins, the S100 P cluster I is more important for protein conformational stability than the cluster II

    Calcium-Bound S100P Protein Is a Promiscuous Binding Partner of the Four-Helical Cytokines

    No full text
    S100 proteins are multifunctional calcium-binding proteins of vertebrates that act intracellularly, extracellularly, or both, and are engaged in the progression of many socially significant diseases. Their extracellular action is typically mediated by the recognition of specific receptor proteins. Recent studies indicate the ability of some S100 proteins to affect cytokine signaling through direct interaction with cytokines. S100P was shown to be the S100 protein most actively involved in interactions with some four-helical cytokines. To assess the selectivity of the S100P protein binding to four-helical cytokines, we have probed the interaction of Ca2+-bound recombinant human S100P with a panel of 32 four-helical human cytokines covering all structural families of this fold, using surface plasmon resonance spectroscopy. A total of 22 cytokines from all families of four-helical cytokines are S100P binders with the equilibrium dissociation constants, Kd, ranging from 1 nM to 3 µM (below the Kd value for the S100P complex with the V domain of its conventional receptor, receptor for advanced glycation end products, RAGE). Molecular docking and mutagenesis studies revealed the presence in the S100P molecule of a cytokine-binding site, which overlaps with the RAGE-binding site. Since S100 binding to four-helical cytokines inhibits their signaling in some cases, the revealed ability of the S100P protein to interact with ca. 71% of the four-helical cytokines indicates that S100P may serve as a poorly selective inhibitor of their action

    Interaction of S100A6 Protein with the Four-Helical Cytokines

    No full text
    S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines

    Interferon-β Activity Is Affected by S100B Protein

    No full text
    Interferon-β (IFN-β) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-β activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-β interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-β binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B–IFN-β interaction. S100B monomerization increases its affinity to IFN-β by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-β and S100B (5–25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-β activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases

    Erythropoietin Interacts with Specific S100 Proteins

    No full text
    Erythropoietin (EPO) is a clinically significant four-helical cytokine, exhibiting erythropoietic, cytoprotective, immunomodulatory, and cancer-promoting activities. Despite vast knowledge on its signaling pathways and physiological effects, extracellular factors regulating EPO activity remain underexplored. Here we show by surface plasmon resonance spectroscopy, that among eighteen members of Ca2+-binding proteins of the S100 protein family studied, only S100A2, S100A6 and S100P proteins specifically recognize EPO with equilibrium dissociation constants ranging from 81 nM to 0.5 µM. The interactions occur exclusively under calcium excess. Bioinformatics analysis showed that the EPO-S100 interactions could be relevant to progression of neoplastic diseases, including cancer, and other diseases. The detailed knowledge of distinct physiological effects of the EPO-S100 interactions could favor development of more efficient clinical implications of EPO. Summing up our data with previous findings, we conclude that S100 proteins are potentially able to directly affect functional activities of specific members of all families of four-helical cytokines, and cytokines of other structural superfamilies

    Serotonin Promotes Serum Albumin Interaction with the Monomeric Amyloid β Peptide

    No full text
    Prevention of amyloid β peptide (Aβ) deposition via facilitation of Aβ binding to its natural depot, human serum albumin (HSA), is a promising approach to preclude Alzheimer’s disease (AD) onset and progression. Previously, we demonstrated the ability of natural HSA ligands, fatty acids, to improve the affinity of this protein to monomeric Aβ by a factor of 3 (BBRC, 510(2), 248–253). Using plasmon resonance spectroscopy, we show here that another HSA ligand related to AD pathogenesis, serotonin (SRO), increases the affinity of the Aβ monomer to HSA by a factor of 7/17 for Aβ40/Aβ42, respectively. Meanwhile, the structurally homologous SRO precursor, tryptophan (TRP), does not affect HSA’s affinity to monomeric Aβ, despite slowdown of the association and dissociation processes. Crosslinking with glutaraldehyde and dynamic light scattering experiments reveal that, compared with the TRP-induced effects, SRO binding causes more marked changes in the quaternary structure of HSA. Furthermore, molecular docking reveals distinct structural differences between SRO/TRP complexes with HSA. The disintegration of the serotonergic system during AD pathogenesis may contribute to Aβ release from HSA in the central nervous system due to impairment of the SRO-mediated Aβ trapping by HSA
    corecore