199 research outputs found
Contribution of Maternal Immunity to Decreased Rotavirus Vaccine Performance in Low- and Middle-Income Countries
ABSTRACT The role of maternal immunity, received by infants either transplacentally or orally from breast milk, in rotavirus vaccine (RV) performance is evaluated here. Breastfeeding withholding has no effect on vaccine responses, but higher levels of transplacental rotavirus-specific IgG antibody contribute to reduced vaccine seroconversion. The gaps in knowledge on the factors associated with low RV efficacy in low- and middle-income countries (LMIC) remain, and further research is needed to shed more light on these issues
Common Polymorphisms in the Glycoproteins of Human Cytomegalovirus and Associated Strain-Specific Immunity
Human cytomegalovirus (HCMV), one of the most prevalent viruses across the globe, is a common cause of morbidity and mortality for immunocompromised individuals. Recent clinical observations have demonstrated that mixed strain infections are common and may lead to more severe disease progression. This clinical observation illustrates the complexity of the HCMV genome and emphasizes the importance of taking a population-level view of genotypic evolution. Here we review frequently sampled polymorphisms in the glycoproteins of HCMV, comparing the variable regions, and summarizing their corresponding geographic distributions observed to date. The related strain-specific immunity, including neutralization activity and antigen-specific cellular immunity, is also discussed. Given that these glycoproteins are common targets for vaccine design and anti-viral therapies, this observed genetic variation represents an important resource for future efforts to combat HCMV infections
Innate Immune Factors in Mothers' Breast Milk and Their Lack of Association With Rotavirus Vaccine Immunogenicity in Nicaraguan Infants
To better understand underlying causes of lower rotavirus vaccine effectiveness in low-middle income countries (LMICs), we measured innate antiviral factors in Nicaraguan mothers' milk and immune response to the first dose of the pentavalent rotavirus vaccine in corresponding infants. No relationship was found between concentrations of innate factors and rotavirus vaccine response
Chimeric viruses enable study of antibody responses to human rotaviruses in mice
The leading cause of gastroenteritis in children under the age of five is rotavirus infection, accounting for 37% of diarrhoeal deaths in infants and young children globally. Oral rotavirus vaccines have been widely incorporated into national immunisation programs, but whilst these vaccines have excellent efficacy in high-income countries, they protect less than 50% of vaccinated individuals in low- and middle-income countries. In order to facilitate the development of improved vaccine strategies, a greater understanding of the immune response to existing vaccines is urgently needed. However, the use of mouse models to study immune responses to human rotavirus strains is currently limited as rotaviruses are highly species-specific and replication of human rotaviruses is minimal in mice. To enable characterisation of immune responses to human rotavirus in mice, we have generated chimeric viruses that combat the issue of rotavirus host range restriction. Using reverse genetics, the rotavirus outer capsid proteins (VP4 and VP7) from either human or murine rotavirus strains were encoded in a murine rotavirus backbone. Neonatal mice were infected with chimeric viruses and monitored daily for development of diarrhoea. Stool samples were collected to quantify viral shedding, and antibody responses were comprehensively evaluated. We demonstrated that chimeric rotaviruses were able to efficiently replicate in mice. Moreover, the chimeric rotavirus containing human rotavirus outer capsid proteins elicited a robust antibody response to human rotavirus antigens, whilst the control chimeric murine rotavirus did not. This chimeric human rotavirus therefore provides a new strategy for studying human-rotavirus-specific immunity to the outer capsid, and could be used to investigate factors causing variability in rotavirus vaccine efficacy. This small animal platform therefore has the potential to test the efficacy of new vaccines and antibody-based therapeutics
Short Communication: HIV Type 1 Subtype C Variants Transmitted Through the Bottleneck of Breastfeeding Are Sensitive to New Generation Broadly Neutralizing Antibodies Directed Against Quaternary and CD4-Binding Site Epitopes
Mother-to-child transmission of HIV-1 subtype C can occur in utero, intrapartum, or via breast milk exposure. While not well understood, there are putative differences in the mechanisms involved with the distinct routes of vertical HIV transmission. Here, we address the question of whether specific viral characteristics are common to variants transmitted through breastfeeding that may facilitate evasion of innate or adaptive immune responses. We amplified the envelope gene (env) from the plasma of six infants during acute infection who were infected with HIV-1 subtype C through breastfeeding, and from three available matched maternal samples. We sequenced the full-length env genes in these subjects revealing heterogeneous viral populations in the mothers and homogeneous populations in the infants. In five infants, the viral population arose from a single variant, while two variants were detected in the remaining infant. Infant env sequences had fewer N-linked glycosylation sites and shorter sequences than those of the available matched maternal samples. Though the small size of the study precluded our ability to test statistical significance, these results are consistent with selection for virus with shorter variable loops and fewer glycosylation sites during transmission of HIV-1 subtype C in other settings. Transmitted envs were resistant to neutralization by antibodies 2G12 and 2F5, but were generally sensitive to the more broadly neutralizing PG9, PG16, and VRC01, indicating that this new generation of broadly neutralizing monoclonal antibodies could be efficacious in passive immunization strategies
Maternal Humoral Immune Correlates of Peripartum Transmission of Clade C HIV-1 in the Setting of Peripartum Antiretrovirals
ABSTRACT Despite the widespread use of antiretrovirals (ARV), more than 150,000 pediatric HIV-1 infections continue to occur annually. Supplemental strategies are necessary to eliminate pediatric HIV infections. We previously reported that maternal HIV envelope-specific anti-V3 IgG and CD4 binding site-directed antibodies, as well as tier 1 virus neutralization, predicted a reduced risk of mother-to-child transmission (MTCT) of HIV-1 in the pre-ARV era U.S.-based Women and Infants Transmission Study (WITS) cohort. As the majority of ongoing pediatric HIV infections occur in sub-Saharan Africa, we sought to determine if the same maternal humoral immune correlates predicted MTCT in a subset of the Malawian Breastfeeding, Antiretrovirals, and Nutrition (BAN) cohort of HIV-infected mothers ( n = 88, with 45 transmitting and 43 nontransmitting). Women and infants received ARV at delivery; thus, the majority of MTCT was in utero (91%). In a multivariable logistic regression model, neither maternal anti-V3 IgG nor clade C tier 1 virus neutralization was associated with MTCT. Unexpectedly, maternal CD4 binding-site antibodies and anti-variable loop 1 and 2 (V1V2) IgG were associated with increased MTCT, independent of maternal viral load. Neither infant envelope (Env)-specific IgG levels nor maternal IgG transplacental transfer efficiency was associated with transmission. Distinct humoral immune correlates of MTCT in the BAN and WITS cohorts could be due to differences between transmission modes, virus clades, or maternal antiretroviral use. The association between specific maternal antibody responses and in utero transmission, which is distinct from potentially protective maternal antibodies in the WITS cohort, underlines the importance of investigating additional cohorts with well-defined transmission modes to understand the role of antibodies during HIV-1 MTCT
Transient compartmentalization of simian immunodeficiency virus variants in the breast milk of african green monkeys
Natural hosts of simian immunodeficiency virus (SIV), African green monkeys (AGMs), rarely transmit SIV via breast-feeding. In order to examine the genetic diversity of breast milk SIV variants in this limited-transmission setting, we performed phylogenetic analysis on envelope sequences of milk and plasma SIV variants of AGMs. Low-diversity milk virus populations were compartmentalized from that in plasma. However, this compartmentalization was transient, as the milk virus lineages did not persist longitudinally
Vaccination With a Replication-Defective Cytomegalovirus Vaccine Elicits a Glycoprotein B-Specific Monoclonal Antibody Repertoire Distinct From Natural Infection
Human Cytomegalovirus (HCMV) is the leading infectious congenital infection globally and the most common viral infection in transplant recipients, therefore identifying a vaccine for HCMV is a top priority. Humoral immunity is a correlate of protection for HCMV infection. The most effective vaccine tested to date, which achieved 50% reduction in acquisition of HCMV, was comprised of the glycoprotein B protein given with an oil-in-water emulsion adjuvant MF59. We characterize gB-specific monoclonal antibodies isolated from individuals vaccinated with a disabled infectious single cycle (DISC) CMV vaccine, V160, and compare these to the gB-specific monoclonal antibody repertoire isolated from naturally-infected individuals. We find that vaccination with V160 resulted in gB-specific antibodies that bound homogenously to gB expressed on the surface of a cell in contrast to antibodies isolated from natural infection which variably bound to cell-associated gB. Vaccination resulted in a similar breadth of gB-specific antibodies, with binding profile to gB genotypes 1-5 comparable to that of natural infection. Few gB-specific neutralizing antibodies were isolated from V160 vaccinees and fewer antibodies had identifiable gB antigenic domain specificity compared to that of naturally-infected individuals. We also show that glycosylation of gB residue N73 may shield binding of gB-specific antibodies
ADCC-activating antibodies correlate with decreased risk of congenital human cytomegalovirus transmission
Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence indicates that antibody Fc effector functions may be a previously underappreciated component of maternal immunity against HCMV. We recently reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with protection against cCMV transmission, leading us to hypothesize that additional Fc-mediated antibody functions may be important. In this same cohort of HCMV-transmitting (n = 41) and nontransmitting (n = 40) mother-infant dyads, we report that higher maternal sera antibody–dependent cellular cytotoxicity (ADCC) activation is also associated with lower risk of cCMV transmission. We investigated the relationship between ADCC and IgG responses against 9 viral antigens and found that ADCC activation correlated most strongly with sera IgG binding to the HCMV immunoevasin protein UL16. Moreover, we determined that higher UL16-specific IgG binding and FcγRIII/CD16 engagement were associated with the greatest risk reduction in cCMV transmission. Our findings indicate that ADCC-activating antibodies against targets such as UL16 may represent an important protective maternal immune response against cCMV infection that can guide future HCMV correlates studies and vaccine or antibody-based therapeutic development
Postnatal Cytomegalovirus Exposure in Infants of Antiretroviral-Treated and Untreated HIV-Infected Mothers
HIV-1 and CMV are important pathogens transmitted via breastfeeding. Furthermore, perinatal CMV transmission may impact growth and disease progression in HIV-exposed infants. Although maternal antiretroviral therapy reduces milk HIV-1 RNA load and postnatal transmission, its impact on milk CMV load is unclear. We examined the relationship between milk CMV and HIV-1 load (4–6 weeks postpartum) and the impact of antiretroviral treatment in 69 HIV-infected, lactating Malawian women and assessed the relationship between milk CMV load and postnatal growth in HIV-exposed, breastfed infants through six months of age. Despite an association between milk HIV-1 RNA and CMV DNA load (0.39 log(10) rise CMV load per log(10) rise HIV-1 RNA load, 95% CI 0.13–0.66), milk CMV load was similar in antiretroviral-treated and untreated women. Higher milk CMV load was associated with lower length-for-age (−0.53, 95% CI: −0.96, −0.10) and weight-for-age (−0.40, 95% CI: −0.67, −0.13) Z-score at six months in exposed, uninfected infants. As the impact of maternal antiretroviral therapy on the magnitude of postnatal CMV exposure may be limited, our findings of an inverse relationship between infant growth and milk CMV load highlight the importance of defining the role of perinatal CMV exposure on growth faltering of HIV-exposed infants
- …