180 research outputs found

    Genetics of exceptional longevity.

    Get PDF
    Abstract Centenarians exist at the extreme of life expectancy and are rare. A number of pedigree and molecular genetic studies indicate that a significant component of exceptional longevity is genetically influenced. Furthermore, the recent discovery of a genetic locus on chromosome 4 indicates the powerful potential of studying centenarians for genetic factors that significantly modulate aging and susceptibility to age-related diseases. These studies include siblings and children of centenarians. Siblings have a significantly increased propensity to achieve exceptional old age and have half the mortality risk of their birth cohort from young adulthood through extreme old age. The children of centenarians are emerging as a promising model for the genetic and phenotypic study of aging relatively slowly and the delay and perhaps escape of important age-related diseases.

    Burden of disease variants in participants of the Long Life Family Study

    Get PDF
    Case control studies of nonagenarians and centenarians provide evidence that long-lived individuals do not differ in the rate of disease associated variants compared to population controls. These results suggest that an enrichment of novel protective variants, rather than a lack of disease associated variants, determine the genetic predisposition to exceptionally long lives. Using data from the Long Life Family Study (LLFS), we sought to replicate these findings and extend them to include a larger number of disease-specific risk alleles. To accomplish this goal, we built a genetic risk score for each of four age-related disease groups: Alzheimer's disease, cardiovascular disease and stroke, type 2 diabetes, and various cancers and compared the distribution of these scores between older participants of the LLFS, their offspring and their spouses. The analyses showed no significant differences in distribution of the genetic risk scores for cardiovascular disease and stroke, type 2 diabetes, or cancer between the groups, while participants of the LLFS appeared to carry an average 1% fewer risk alleles for Alzheimer's disease compared to spousal controls and, while the difference may not be clinically relevant, it was statistically significant. However, the statistical significance between familial longevity and the Alzheimer's disease genetic risk score was lost when a more stringent linkage disequilibrium threshold was imposed to select independent genetic variants

    Clustering by genetic ancestry using genome-wide SNP data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Population stratification can cause spurious associations in a genome-wide association study (GWAS), and occurs when differences in allele frequencies of single nucleotide polymorphisms (SNPs) are due to ancestral differences between cases and controls rather than the trait of interest. Principal components analysis (PCA) is the established approach to detect population substructure using genome-wide data and to adjust the genetic association for stratification by including the top principal components in the analysis. An alternative solution is genetic matching of cases and controls that requires, however, well defined population strata for appropriate selection of cases and controls.</p> <p>Results</p> <p>We developed a novel algorithm to cluster individuals into groups with similar ancestral backgrounds based on the principal components computed by PCA. We demonstrate the effectiveness of our algorithm in real and simulated data, and show that matching cases and controls using the clusters assigned by the algorithm substantially reduces population stratification bias. Through simulation we show that the power of our method is higher than adjustment for PCs in certain situations.</p> <p>Conclusions</p> <p>In addition to reducing population stratification bias and improving power, matching creates a clean dataset free of population stratification which can then be used to build prediction models without including variables to adjust for ancestry. The cluster assignments also allow for the estimation of genetic heterogeneity by examining cluster specific effects.</p

    Imputation of missing genotypes: an empirical evaluation of IMPUTE

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Imputation of missing genotypes is becoming a very popular solution for synchronizing genotype data collected with different microarray platforms but the effect of ethnic background, subject ascertainment, and amount of missing data on the accuracy of imputation are not well understood.</p> <p>Results</p> <p>We evaluated the accuracy of the program IMPUTE to generate the genotype data of partially or fully untyped single nucleotide polymorphisms (SNPs). The program uses a model-based approach to imputation that reconstructs the genotype distribution given a set of referent haplotypes and the observed data, and uses this distribution to compute the marginal probability of each missing genotype for each individual subject that is used to impute the missing data. We assembled genome-wide data from five different studies and three different ethnic groups comprising Caucasians, African Americans and Asians. We randomly removed genotype data and then compared the observed genotypes with those generated by IMPUTE. Our analysis shows 97% median accuracy in Caucasian subjects when less than 10% of the SNPs are untyped and missing genotypes are accepted regardless of their posterior probability. The median accuracy increases to 99% when we require 0.95 minimum posterior probability for an imputed genotype to be acceptable. The accuracy decreases to 86% or 94% when subjects are African Americans or Asians. We propose a strategy to improve the accuracy by leveraging the level of admixture in African Americans.</p> <p>Conclusion</p> <p>Our analysis suggests that IMPUTE is very accurate in samples of Caucasians origin, it is slightly less accurate in samples of Asians background, but substantially less accurate in samples of admixed background such as African Americans. Sample size and ascertainment do not seem to affect the accuracy of imputation.</p

    Meta-analysis of genetic variants associated with human exceptional longevity

    Get PDF
    Despite evidence from family studies that there is a strong genetic influence upon exceptional longevity, relatively few genetic variants have been associated with this trait. One reason could be that many genes individually have such weak effects that they cannot meet standard thresholds of genome wide significance, but as a group in specific combinations of genetic variations, they can have a strong influence. Previously we reported that such genetic signatures of 281 genetic markers associated with about 130 genes can do a relatively good job of differentiating centenarians from non-centenarians particularly if the centenarians are 106 years and older. This would support our hypothesis that the genetic influence upon exceptional longevity increases with older and older (and rarer) ages. We investigated this list of markers using similar genetic data from 5 studies of centenarians from the USA, Europe and Japan. The results from the meta-analysis show that many of these variants are associated with survival to these extreme ages in other studies. Since many centenarians compress morbidity and disability towards the end of their lives, these results could point to biological pathways and therefore new therapeutics to increase years of healthy lives in the general population

    NIA Long Life Family Study: Objectives, design, and heritability of cross-sectional and longitudinal phenotypes

    Get PDF
    The NIA Long Life Family Study (LLFS) is a longitudinal, multicenter, multinational, population-based multigenerational family study of the genetic and nongenetic determinants of exceptional longevity and healthy aging. The Visit 1 in-person evaluation (2006-2009) recruited 4 953 individuals from 539 two-generation families, selected from the upper 1% tail of the Family Longevity Selection Score (FLoSS, which quantifies the degree of familial clustering of longevity). Demographic, anthropometric, cognitive, activities of daily living, ankle-brachial index, blood pressure, physical performance, and pulmonary function, along with serum, plasma, lymphocytes, red cells, and DNA, were collected. A Genome Wide Association Scan (GWAS) (Ilumina Omni 2.5M chip) followed by imputation was conducted. Visit 2 (2014-2017) repeated all Visit 1 protocols and added carotid ultrasonography of atherosclerotic plaque and wall thickness, additional cognitive testing, and perceived fatigability. On average, LLFS families show healthier aging profiles than reference populations, such as the Framingham Heart Study, at all age/sex groups, for many critical healthy aging phenotypes. However, participants are not uniformly protected. There is considerable heterogeneity among the pedigrees, with some showing exceptional cognition, others showing exceptional grip strength, others exceptional pulmonary function, etc. with little overlap in these families. There is strong heritability for key healthy aging phenotypes, both cross-sectionally and longitudinally, suggesting that at least some of this protection may be genetic. Little of the variance in these heritable phenotypes is explained by the common genome (GWAS + Imputation), which may indicate that rare protective variants for specific phenotypes may be running in selected families
    corecore