16 research outputs found

    Wormhole Geometries In f(R,T)f(R,T) Gravity

    Full text link
    We study wormhole solutions in the framework of f (R,T) gravity where R is the scalar curvature, and T is the trace of the stress-energy tensor of the matter. We have obtained the shape function of the wormhole by specifying an equation of state for the matter field and imposing the flaring out condition at the throat. We show that in this modified gravity scenario, the matter threading the wormhole may satisfy the energy conditions, so it is the effective stress-energy that is responsible for violation of the null energy condition.Comment: 9 pages, 4 figures, published version, references adde

    A Weyl-Dirac Cosmological Model with DM and DE

    Full text link
    In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is considered. It is assumed that the space-time of the universe has a chaotic Weylian microstructure but is described on a large scale by Riemannian geometry. Locally fields of the Weyl connection vector act as creators of massive bosons having spin 1. It is suggested that these bosons, called weylons, provide most of the dark matter in the universe. At the beginning the universe is a spherically symmetric geometric entity without matter. Primary matter is created by Dirac's gauge function very close to the beginning. In the early epoch, when the temperature of the universe achieves its maximum, chaotically oriented Weyl vector fields being localized in micro-cells create weylons. In the dust dominated period Dirac's gauge function is giving rise to dark energy, the latter causing the cosmic acceleration at present. This oscillatory universe has an initial radius identical to the Plank length = 1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm, while its maximum value is 8.54 exp (28) cm. All forms of matter are created by geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR

    Energy Conditions in f(G)f(G) Modified Gravity with Non-minimal Coupling to Matter

    Full text link
    In this paper we study a model of modified gravity with non-minimal coupling between a general function of the Gauss-Bonnet invariant, f(G)f(G), and matter Lagrangian from the point of view of the energy conditions. Such model has been introduced in Ref. [21] for description of early inflation and late-time cosmic acceleration. We present the suitable energy conditions for the above mentioned model and then, we use the estimated values of the Hubble, deceleration and jerk parameters to apply the obtained energy conditions to the specific class of modified Gauss-Bonnet models.Comment: 12 pages, no figur, Accepted for publication in Astrophysics and Space Scienc

    Modified f(G) gravity models with curvature-matter coupling

    Full text link
    A modified f(G) gravity model with coupling between matter and geometry is proposed, which is described by the product of the Lagrange density of the matter and an arbitrary function of the Gauss-Bonnet term. The field equations and the equations of motion corresponding to this model show the non-conservation of the energy-momentum tensor, the presence of an extra-force acting on test particles and the non-geodesic motion. Moreover, the energy conditions and the stability criterion at de Sitter point in the modified f(G) gravity models with curvature-matter coupling are derived, which can degenerate to the well-known energy conditions in general relativity. Furthermore, in order to get some insight on the meaning of these energy conditions, we apply them to the specific models of f(G) gravity and the corresponding constraints on the models are given. In addition, the conditions and the candidate for late-time cosmic accelerated expansion in the modified f(G) gravity are studied by means of conditions of power-law expansion and the equation of state of matter less than -1/ 3 .Comment: 13 pages, 4 figure

    Two-Fluid Scenario for Dark Energy Models in an FRW Universe-Revisited

    Full text link
    In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy by revisiting the recent results (Amirhashchi et al. in Chin. Phys. Lett. 28:039801, 2011a). To prevail the deterministic solution we select the scale factor a(t)=tneta(t) = \sqrt{t^{n}e^{t}} which generates a time-dependent deceleration parameter (DP), representing a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. We consider the two cases of an interacting and non-interacting two-fluid (barotropic and dark energy) scenario and obtained general results. The cosmic jerk parameter in our derived model is also found to be in good agreement with the recent data of astrophysical observations under the suitable condition. The physical aspects of the models and the stability of the corresponding solutions are also discussed.Comment: 10 pages, 4 figures. arXiv admin note: substantial overlap with arXiv:1011.394
    corecore