12 research outputs found
Calorimetric study of the antibacterial activity of sodium n-alkylsulfates on the metabolism of Chromobacterium violaceum
The bioactivity of a series of sodium n-alkylsulfates (C6-C10 and C12) was studied with flow calorimetry to follow in real time the calorimetric effect on the metabolic rate of the bacterium Chromobacterium violaceum. All the compounds showed a linear plot of the fraction of control metabolic heat rate against log (dose). From these plots the value of dose max (the dose producing zero metabolic heat rate) for each compound was evaluated. The value of dose max is correlated with the chain length of the molecule, showing that their biological activity is directly proportional to the lipophilicity of the compound.A bioatividade de n-alquilsulfatos (C6 - C10 e C12) foi estudada utilizando-se calorimetria de fluxo em tempo real, para monitorar a resposta biológica (BR) produzida pelo metabolismo aeróbico da bactéria Chromobacterium violaceum. Todos os compostos apresentaram um comportamento linear no gráfico de BR vs. log (dose). Destes gráficos, foi calculado o valor de (dose)max para cada composto. O valor de (dose)max, que está diretamente relacionado com a biotividade, permitiu uma boa correlação entre esta propriedade e a estrutura da molécula, mostrando que a atividade biológica é diretamente proporcional à lipofilicidade dos compostos.10851088Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Physicochemical Properties Related To The Development Of Nation ® Membranes For Application In Fuel Cells [propriedades Físico-químicas Relacionadas Ao Desenvolvimento De Membranas De Nation ® Para Aplicações Em Células A Combustível Do Tipo Pemfc]
Fuel Cells (FC) continue to receive growing attention, in spite of not being a new technology, for they are considered as the "energy source of the future" owing to characteristics such as high energetic yield and low emission of pollutants. FC technology may lead to a reduction in the negative impact from energy sources on the enviroment, thus improving the quality of life and extending the lifetime of fossil combustible reserves. The mainstream of research in FC is now directed at mobile, portable systems, for which the most promising technology is the Polymer Electrolyte Fuel Cells, also known as PEMFC (Polymer Electrolyte Fuel Cell). Research in this topic focuses on the development of polymer membranes whose target is to reduce its production costs. In this work we shall focus on physicochemical aspects related to development of polymeric membranes. A discussion on structural aspects of Nation ® will be carried, which will be related to the following physicochemical properties: electrosmotic flux, gaseous permeability, water transport through polimeric membrane, chemical and thermal stabilities. All the discussion was made using Nation ® as model of perfluorated polymers.184281288Zink, F.Lu, Y.Schaefer, L. & Schefer, L. - Energy Convers. Manage, 48, p. 809-818 (2007)Blomen, L.J.M.J., Mugerwa, M.N., (1993) Fuel Cell Systems, , Plenum Press, New YorkDoITPoms (Dissemination of information technology for the Promotion of Materials Science), University of Cambridge, site: http://www.doitpoms.ac.uk/ tlplib/fuel-cells/history.php, acessed in 30 th May 2007Meier-Haack, J.Taeger, A.Vogel, C.Schlenstedt, K.Lenk, W. & Lehmann, D. - Sep. Purif. Technol.., 41, p. 207-220 (2005)Hartmut, W.Linardi, M. & Aricó, R. M. - Quím. Nova, 25, p. 470-476 (2002)Amado, R.S., Malta, L.F.B., Garrido, F.M.S., Medeiros, M.E., (2007) Quím. Nova, 30, pp. 189-197Lister, S., McLean, G., (2004) J. Power Sources, 130, pp. 61-76Smitha, B.Sridhar, S. & Khan, A. A. - J. Membr. Sci., 259, p. 10-26 (2005)Carrette, L.Friedrich, K. A. & Stimming, U. - ChemPhys- Chem, 1, p. 162-193 (2000)Kreuer, K. D.Paddison, S. J.Spohr, E. & Schuster, M. - Chem. Rev., 104, p. 4637-4678 (2004)Mauritz, K.A., Moore, R.B., (2004) Chem. Rev, 104, pp. 4535-4585Biyikoglu, A., (2005) Int. J. Hydrogen Energy, 30, pp. 1181-1212Matsuura, T.Kato, M. & Hori, M. - J. Power Sources, 161, p. 74-78 (2006)Oh, M. H.Yoon, Y. S. & Park, S. G. - Electrochim. Acta., 50, p. 777-780 (2004)Kuan, H. C.Ma, C. C. M.Chen, K. H. & Chen, S. M. - J. Power Sources, 134, p. 7-17 (2004)Hornung, R., Kappelt, G., (1998) J. Power Sources, 72, pp. 20-21Wee, J.H., (2006) J. Power Sources, 161, pp. 1-10Jiang, L. H.Sun, G. Q.Wang, S. L.Wang, G. X.Xin, Q.Zhou, Z. H. & Zhou, B. - Electrochem. Commun, 7, p. 663-668 (2005)Wee, J. H.Song, D. J.Jun, C. S.Lin, T. H.Hong, S. A.Lim, H. C. & Lim, K. Y - J. Alloys Compd, 390, p. 155-160 (2005)Antolini, E., (2004) J. Appl. Electrochem, 34, pp. 563-576Ren, X.M., Gottesfeld, S., (2001) J. Electrochem. Soc, 148, pp. A87-A93Vishnyakov, V.M., (2006) Vacuum, 80, pp. 1053-1065Zawodzinski, T. A.Springer, T. E.Davey, J.Jestel, R.Lopez, C.Valerio, J. & Gottesfeld, S. - J. Electrochem. Soc., 140, p. 1981-1985 (1993)Jannasch, P., (2003) Curr. Opin. Colloid Interface Sci, 8, pp. 96-102Chou, J.McFarland, E. W. & Metiu, H. - J. Phys. Chem. B., 109, p. 3252-3256 (2005)Choi, P.Jalani, N. H. & Datta, R. - J. Electrochem. Soc., 152, p. E123-E130 (2005)Janssen, G.J.M., (2001) J. Electrochem. Soc, 148, pp. A1313-A1323Kreuer, K. D.Rabenau, A. & Weppner, W. - Angew. Chem., Int. Ed., 21, p. 208-209 (1982)Pivovar, B., (2006) Polymer, 47, pp. 4194-4202Costamagna, P., Srinivasan, S., (2001) J. Power Sources, 102, pp. 253-269Zawodzinski, T. A.Neeman, M.Sillerud, L. O. & Gottesfel, S. - J. Phys. Chem., 95, p. 6040-6044 (1991)Ise, M.Kreuer, K. D. & Maier, J. - Solid State Ionics, 125, p. 213-223 (1999)Zawodzinski, T. A.Davey, J.Valerio, J. & Gottesfeld, S. - Electrochim. Acta, 40, p. 297-302 (2006)Kreuer, K.D., (1997) Solid State Ionics, 97, pp. 1-15Watanabe, M.Uchida, H.Seki, Y.Emori, M. & Stonehart, P. - J. Electrochem. Soc., 143, p. 3847-3852 (1996)Ogumi, Z.Kuroe, T. & Takehara, Z. - J. Electrochem. Soc., 132, p. 2601-2605 (1985)Sakai, T.Takenaka, H.Wakabayashi, N.Kawami, Y. & Torikae, E. - J. Electrochem. Soc., 132, p. 1328-1332 (1985)Yeager, H.L., Steck, A., (1981) J. Electrochem. Soc, 128, pp. 1880-1884Falk, M., (1980) Can. J. Chem.-Rev. Can. Chim, 58, pp. 1495-1501Broka, K., Ekdunge, P., (1997) J. Appl. Electrochem, 27, pp. 117-123Curtin, D. E.Lousenberg, R. D.Henry, T. J.Tangeman, P. C. & Tisak, M. E. - J. Power Sources, 131, p. 41-48 (2004)Samms, S. R.Wasmus, S. & Savinell, R.F. - J. Electrochem. Soc., 143, p. 1498-1504 (1996)Surowiec, J., Bogoczek, R., (1988) J. Therm. Anal, 33, pp. 1097-1102Wilkie, C. A.Thomsen, J. R. & Mittleman, M. L. - J. Appl. Polym. Sci., 42, p. 901-909 (1991)Lage, L. G.Delgado, P. G. & Kawano, Y - J. Therm. Anal. Calorim., 175, p. 521-530 (2004
Calorimetric study of the antibacterial activity of sodium n-alkylsulfates on the metabolism of Chromobacterium violaceum
The bioactivity of a series of sodium n-alkylsulfates (C6-C10 and C12) was studied with flow calorimetry to follow in real time the calorimetric effect on the metabolic rate of the bacterium Chromobacterium violaceum. All the compounds showed a linear plot of the fraction of control metabolic heat rate against log (dose). From these plots the value of dose max (the dose producing zero metabolic heat rate) for each compound was evaluated. The value of dose max is correlated with the chain length of the molecule, showing that their biological activity is directly proportional to the lipophilicity of the compound
Electrostatic Charging And Charge Transport By Hydrated Amorphous Silica Under A High Voltage Direct Current Electrical Field
This work was initially based on the casual observation of an electrostatic phenomenon, in which particles of amorphous silica were attracted by a dc electrical field. The first observations were recently shown in a communication in this journal. To explain the electrical charge transport process observed in this work, all forces acting on silica particles were estimated and the significant ones were used to formulate a model made up of three elementary steps. Analyzing the experimental observations using this model, it was possible to suggest that electrons can be introduced into and removed from electronic bands of water. © 2011 American Institute of Physics.13421Rouquerol, F., Rouquerol, J., Sing, K.S.W., (1999) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, , (Academic, London)El Shafei, G.M.S., (2000) Adsorption on Silica Surfaces, 90, p. 40. , Surfactant Science Series Vol., edited by E. Papirer (Marcel Dekker, New York)Du, Q., Freysz, E., Shen, Y.R., (1994) Phys. Rev. Lett., 72, p. 238. , 10.1103/PhysRevLett.72.238Bogdan, A., (2000) Adsorption on Silica Surfaces, 90, p. 689. , Surfactant Science Series Vol., edited by E. Papirer (Marcel Dekker, New York)Ramsay, J.D.F., Poinsignon, C., (1987) Langmuir, 3, p. 320. , 10.1021/la00075a006Hall, P.G., Pidduck, A., Wright, C.J., (1981) J. Colloid Interface Sci., 79, p. 339. , 10.1016/0021-9797(81)90085-0Takei, T., Chikazawa, M., Origin of differences in heats of immersion of silicas in water (1998) Journal of Colloid and Interface Science, 208 (2), pp. 570-574. , DOI 10.1006/jcis.1998.5880Klier, K., Shen, J.H., Zettlemo, A.C., (1973) J. Phys. Chem., 77, p. 1458. , 10.1021/j100630a026Hall, P., Williams, R.T., Slade, R.C.T., (1985) J. Chem. Soc., Faraday Trans. 1, 81, p. 847. , 10.1039/f19858100847Scott, R.P.W., Traiman, S., (1980) J. Chromatogr., 196, p. 193. , 10.1016/S0021-9673(00)80439-2Staszczuk, P., Jaroniec, M., Gilpin, R.K., Thermoanalytical studies of water films on porous silicas at subambient and elevated temperatures (1996) Thermochimica Acta, 287 (2), pp. 225-233. , DOI 10.1016/S0040-6031(96)03016-X, PII S004060319603016XYamauchi, H., Kondo, S., (1988) Colloid Polym. Sci., 266, p. 855. , 10.1007/BF01417870Yang, J., Meng, S., Xu, L.F., Wang, E.G., (2004) Phys. Rev. Lett., 92, p. 146102. , 10.1103/PhysRevLett.92.146102Do Couto, P.C., Costa Cabral, B.J., Canuto, S., Electron binding energies of water clusters: Implications for the electronic properties of liquid water (2006) Chemical Physics Letters, 429 (1-3), pp. 129-135. , DOI 10.1016/j.cplett.2006.08.046, PII S0009261406011493Ohrwall, G., Fink, R.F., Tchaplyguine, M., Ojamae, L., Lundwall, M., Marinho, R.R.T., De Brito, A.N., Bjorneholm, O., The electronic structure of free water clusters probed by Auger electron spectroscopy (2005) Journal of Chemical Physics, 123 (5), pp. 1-10. , DOI 10.1063/1.1989319, 054310Hirofumi, S., Fumio, H., (1999) J. Chem. Phys., 111, p. 8545. , 10.1063/1.480195Willians, F., Varma, S.P., Hillenius, S., (1976) J. Chem. Phys., 64, p. 1549. , 10.1063/1.432377Chipman, D.M., (1978) J. Phys. Chem., 82, p. 1080. , 10.1021/j100498a023Chipman, D.M., (1979) J. Phys. Chem., 83, p. 1657. , 10.1021/j100475a016Lee, H.M., Suh, S.B., Tarakeshwar, P., Kim, K.S., Origin of the magic numbers of water clusters with an excess electron (2005) Journal of Chemical Physics, 122 (4), pp. 1-6. , DOI 10.1063/1.1834502, 044309Do Couto, P.C., Estacio, S.G., Cabral, B.J.C., The Kohn-Sham density of states and band gap of water: From small clusters to liquid water (2005) Journal of Chemical Physics, 123 (5), pp. 1-10. , DOI 10.1063/1.1979487, 054510McCarty, L.S., Winkleman, A., Whitesides, G.M., Ionic electrets: Electrostatic charging of surfaces by transferring mobile ions upon contact (2007) Journal of the American Chemical Society, 129 (13), pp. 4075-4088. , DOI 10.1021/ja067301eShpenkov, G.P., (1995) Friction Surface Phenomena, 29. , Tribology Series Vol. (Elsevier, Amsterdam)Gouveia, R.F., Galembeck, F., (2009) J. Am. Chem. Soc., 131, p. 11381. , 10.1021/ja900704fOvchinnikova, K., Pollack, G.H., (2009) Langmuir, 25, p. 542. , 10.1021/la802430kSoares, L.C., Bertazzo, S., Burgo, T.A.L., Baldin, V., Galembeck, F., (2008) J. Braz. Chem. Soc., 19, p. 277. , 10.1590/S0103-50532008000200012Paik, D.H., Lee, I.-R., Yang, D.-S., Baskin, J.S., Zewail, A.H., Electrons in finite-sized water cavities: Hydration dynamics observed in real time (2004) Science, 306 (5696), pp. 672-675. , DOI 10.1126/science.1102827Taylor, A., Matta, C.F., Boyd, R.J., (2007) J. Chem. Theory Comput., 3, p. 1054Hammer, N.I., Shin, J.-W., Headrick, J.M., Diken, E.C., Roscioli, J.R., Weddle, G.H., Johnson, M.A., How do small water clusters bind an excess electron? (2004) Science, 306 (5696), pp. 675-679. , DOI 10.1126/science.1102792Onda, K., Li, B., Zhao, J., Jordan, K.D., Yang, J., Petek, H., Wet electrons at the H 2O/TiO 2(110) surface (2005) Science, 308 (5725), pp. 1154-1158. , DOI 10.1126/science.1109366Bragg, A.E., Verlet, J.R.R., Kammrath, A., Cheshnovsky, O., Neumark, D.M., Hydrated electron dynamics: From cluster to bulk (2004) Science, 306 (5696), pp. 669-671. , DOI 10.1126/science.1103527Perles, C.E., Volpe, P.L.O., (2010) J. Chem. Phys., 133, p. 241101. , 10.1063/1.3529422http://www.datasheetcatalog.org/datasheet/BurrBrown/mXqyxtx.pdf, See (accessed on 01032011)Ek, S., Root, A., Peussa, M., Niinisto, L., Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results (2001) Thermochimica Acta, 379 (1-2), pp. 201-212. , DOI 10.1016/S0040-6031(01)00618-9, PII S0040603101006189http://www.discoverysciences.com/uploadedFiles/Home/MEDIA_Davisil.pdf, See (accessed on 30032011)Handbook of Chemistry and Physics, pp. 2004-2005. , edited by D. R. Lide, 85th ed. (CRC Press, New York), Cha 15, 37Turov, V.V., Mironyuk, I.F., Adsorption layers of water on the surface of hydrophilic, hydrophobic and mixed silicas (1998) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134 (3), pp. 257-263. , DOI 10.1016/S0927-7757(97)00225-2, PII S0927775797002252Asay, D.B., Kim, S.H., Evolution of the adsorbed water layer structure on silicon oxide at room temperature (2005) Journal of Physical Chemistry B, 109 (35), pp. 16760-16763. , DOI 10.1021/jp053042oXiao, X., Qian, L., (2000) Langmuir, 16, p. 8153. , 10.1021/la000770oIsraelachvili, J., (1985) Intermolecular and Surface Forces, p. 122. , (Academic, New York)Jones, R., Pollock, H.M., Cleaver, J.A.S., Hodges, C.S., Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment (2002) Langmuir, 18 (21), pp. 8045-8055. , DOI 10.1021/la0259196Bernas, A., Ferradini, C., Jay-Gerin, J.-P., On the electronic structure of liquid water: Facts and reflections (1997) Chemical Physics, 222 (2-3), pp. 151-160. , DOI 10.1016/S0301-0104(97)00213-9Bulk density is the density calculated with the apparent volume of a porous particle considering the pore void volum
Thermodynamic And Kinetic Studies Of Glucose Mutarotation By Using A Portable Personal Blood Glucose Meter
A thermodynamic and kinetic study of the mutarotation reaction of D-glucose in aqueous solution was carried out using a portable personal blood glucose meter. This physical chemical experiment is proposed as an alternative to classical polarimetry. The glucose meter allows the indirect monitoring of the mutarotation process in water, by using an enzymatic redox reaction. The test strips of the glucose meter contain glucose dehydrogenase which converts β-D-glucose into Dglucolactone. This reaction selectively converts glucose and generates an electrical current in the glucose meter which is proportional to the glucose concentration. This experiment allows the teacher to explore the kinetics and thermodynamics of the mutarotation of D-glucose and, moreover, the stereospecificity of enzymatic reactions.561209214(1989) Ullman's Encyclopedia of Industrial Chemistry, A12, pp. 457-476. , 5th Ed. Revised, Editors: B. Elvers, S. Hawkins, M. Ravenscroft, J. F. Rounsaville, G. SchulzVCH Weinheim, GermanyYamabe, S., Ishikawa, T., (1999) J. Org. Chem, 64, p. 4519Panov, M.Y., Sokolova, O.B., (2003) Russ. J. Gen. Chem, 73, p. 1914Panov, M.Y., Sokolova, O.B., (2004) Russ. J. Gen. Chem, 74, p. 1451Silva, A.M., da Silva, E.C., da Silva, C.O., (2006) Carbohydr. Res, 341, p. 1029Streitwieser, A., Heathcock, C.H., Kosower, E.M., (1992) Introduction to Organic Chemistry, p. 910. , 4° ed. Maxwell Macmillan International, New YorkVoet, D., Voet, J.G., (1995) Biochemistry, p. 254. , 2nd ed. Wiley, New YorkAngyal, S.J., (1991) Adv. Carbohydr. Chem. Biochem, 49, p. 19C. E. Perles, P. L. O. Volpe, P. L. O. J. Chem. Educ. 2008, 85, 686Consumer Information on Test Strips for Blood Glucose Meter ACCU-CHECK Advantage II. http://www.accu-check.com/us/-(accessed Jan. 2008)KEGG Enzyme 1.1.1.47. http://www.genome.jp/dbget-bin//www-bget?enzyme+1. 1.1.47 (accessed Jan. 2008)Le BarćH, N., Grossel, J.M., Looten, P., Mathlouthi, M., (2001) Food Chem, 74, p. 119Molteni, C., Parrinello, M., (1998) J. Am. Chem. Soc, 120, p. 2168Oubrie, A., Rozeboom, H.J., Kalk, K.H., Olsthoorn, A.J.J., Duine, J.A., Dijkstra, B.W., (1999) EMBO J, 18, p. 518
Rheological study of crude oil/water interface – the effect of temperature and brine on interfacial film
It is of fundamental importance for the petroleum industry to promote the coalescence of water droplets that may be dispersed in oil. Therefore, it is necessary to understand the rheological properties of the water/oil interface, which is straightly related to emulsion stability. This work aimed to present a practical approach about water/oil interface in realistic systems, i.e., using a crude oil and water or brine solution, the last one with the same composition of the water produced along with the oil production. Thus, it was investigated the water/crude oil and brine/crude oil interfaces in terms of their rheological properties at temperatures ranging from 30 °C to 60 °C. The interfacial rheological measurements were performed by the oscillatory pendant drop technique. The results indicated that temperature has a negligible effect on the interface properties; however, the salt content in the water phase resulted in an increase in the viscous modulus between 30 °C and 60 °C. The interfacial viscous and elastic moduli were shown to be dependent on the droplet oscillation period. Despite the elastic modulus being almost the same for water and brine, for the brine system the viscous modulus was significantly higher than that observed for water16283584
Construction Of A Differential Isothermal Calorimeter Of High Sensitivity And Low Cost [construção De Um Calorímetro Isotérmico Diferencial De Alta Sensibilidade E Baixo Custo]
The high cost of sensitivity commercial calorimeters may represent an obstacle for many calonmetric research groups. This work describes the construction and calibration of a batch differential heat conduction calorimeter with sample cells volumes of about 400 μL. The calorimeter was built using two small high sensibility square Peltier thermoelectric sensors and the total cost was estimated to be about USS 500. The calorimeter was used to study the excess enthalpy of solution of binary mixtures of liquids, as a function of composition, for the following binary systems of solvents: water + 1,4-dioxane or + dimethylsulfoxide at 298,2 ± 0,5 K.32616511654Miles, R.J., Beezer, A.E., Perry, B.F., (1987) Thermal and Energetic Studies of Cellular Biological Systems, p. 106. , IOP Publishing LTD: BristolVolpe, P.L.O., (1993) Quim. Nova, 16, p. 49Perles, C.E., (2006) Dissertação de Mestrado, , Universidade Estadual de Campinas, BrasilScatchard, G., (1931) Chem. Rev., 8, p. 321Scatchard, G., Hamer, W.J., (1935) J. Am. Chem. Soc., 57, p. 1805Guggenheim, E.A., (1967) Thermodynamics, 5th Ed., , Publishing Company: North-HollandRowlinson, J.S., Swinton, F.J., (1982) Liquid and Liquid Mixtures, 3rd Ed., , Butterworths: LondonSedlaček, V., (1986) Non-Ferrous Metals and Alloys, , Elsevier: New YorkChristensen, J.J., (1982) Handbook of Heats of Mixing, p. 1414. , John Wiley & Sons: USA, 1456, 1468Olofsson, G., Berling, D., Markova, N., Molund, M., (2000) Thermochim. Acta, 347, p. 31Tôrres, R.B., Marchiore, A.C.M., Volpe, P.L.O., (2006) J. Chem. Thermodyn, 38, p. 52
Bioreduction Of Ethyl 3-oxobutyrate By Saccharomyces Cerevisiae: A Metabolic In Vivo Study
A systematic study of the bioreduction of ethyl 3-oxobutyrate by Saccharomyces cerevisiae under aerobic and anaerobic conditions was performed by using flow isothermal microcalorimetry. In association with this technique, other properties directly related to the metabolism of S. cerevisiae such as consumption of O2, glucose and pH were also studied. The metabolic aspects of the bioreduction, such as compartmentalization and preferential use of the cofactors (NADH or NADPH), are discussed based on heat and ethanol production, and oxygen and glucose consumption data obtained during a period of 20 h. These data allows us to suggest the compartment in the microorganism cell where the bioreduction can occur for each experimental condition. The obtained results indicate that under aerobic conditions, the process occurs preferentially in the mitochondrial matrix and is associated with the consumption of the cofactor NADH which is regenerated by the respiratory pathway. However, under anaerobic conditions, the bioreduction occurs in the cytosol and is associated with the consumption of the cofactor NADPH, which is regenerated by the pentose phosphate pathway. © 2007 Elsevier B.V. All rights reserved.52-531-48287Daum, S.J., Rosi, D., Goss, W.A., (1977) J. Am. Chem. Soc., 99, pp. 283-284Koyama, T., Ogura, K., (1987) J. Am. Chem. Soc., 109, pp. 2853-2854Breuer, M., Ditrich, K., Habicher, T., Hauer, B., Keßeler, M., Sturmer, R., Zelinski, T., (2004) Angew. Chem. Int., 43, pp. 788-824Rodrigues, J.A.R., Moran, P.J.S., Conceição, G.J.A., Fardelone, L.C., (2004) Food Technol. Biotechnol., 42, pp. 295-303Kaluzna, W.A., Matsuda, T., Sewell, A.K., Steward, J.D., (2004) J. Am. Chem. Soc., 126, pp. 12827-12832Hollmann, F., Lin, P.C., Witholt, B., Schmid, A., (2003) J. Am. Chem. Soc., 125, pp. 8209-8217Adam, W., Boland, W., Hartmann-Schreier, J., Humpf, H.U., Lazarus, M., Saffert, A., Saha-Moller, C.R., Schreier, P., (1998) J. Am. Chem. Soc., 120, pp. 11044-11048Anderson, B.A., Hansen, M.M., Harkness, A.R., Henry, C.L., Zmijewski, M.J., (1995) J. Am. Chem. Soc., 117, pp. 12358-12359Rodriguez, S., Kayser, M.M., Stewart, J.D., (2001) J. Am. Chem. Soc., 123, pp. 1547-1555Servi, S., (1990) Synthesis-Stuttgart, 1, pp. 1-25Csuk, R., Glänzer, B.I., (1991) Chem. Rev., 91, pp. 49-97Santaniello, E., Ferrabochi, P., Grisenti, P., Manzocchi, A., (1992) Chem. Rev., 92, pp. 1071-1140D'Arrigo, P., Pedrocchi-Fantoni, G., Servi, S., (1997) Adv. Appl. Microbiol., 44, pp. 81-123Roberts, S.M., (1999) J. Chem. Soc., Perkin Trans., 1, pp. 1-21Roberts, S.M., (2000) J. Chem. Soc., Perkin Trans., 1, pp. 611-633Harrison, J.S., (1970) The Yeasts, 3, pp. 529-543. , Rose A.H., and Harrison J.S. (Eds), Academic Press, LondonNakamura, K., Matsuda, T., (2006) Curr. Org. Chem., 10, pp. 1217-1246Fiechter, A., Fuhrmann, G.F., Kappelli, O., (1981) Adv. Microb. Physiol., 22, pp. 123-183Bakker, B.M., Overkamp, K.M., van Maris, A.J.A., Kötter, P., Luttik, A.H., van Dijken, J.P., Pronk, J.T., (2001) FEMS Microbiol. Rev., 25, pp. 15-37Kometani, T., Kitatsuji, E., Matsuno, R., (1989) Chem. Lett., 8, pp. 1465-1466Kometani, T., Yoshi, H., Takeuchi, Y., Matsuno, R., (1993) J. Ferment. Bioeng., 76, pp. 414-415Kometani, T., Sakai, Y., Hisae, U., Yoshi, H., Matsuno, R., (1997) Biosci. Biotechnol. Biochem., 61, pp. 1370-1372Wong, C.H., Whitesides, G.M., (1994) Enzymes in Synthetic Organic Chemistry, , Pergamon Press, OxfordFaber, K., (2004) Biotransformations in Organic Chemistry. 5a ed., , Springer-Verlag, BerlinPronk, J.T., Steensma, H.Y., Dijken, J.P.V., (1996) Yeast, 12, pp. 1607-1633Kataoka, M., Yoshiko, N., Shimizu, S., Yamada, H., (1992) Biosci. Biotechnol. Biochem., 56, pp. 820-821Voet, D., Voet, J.G., (1995) Biochemistry. 2nd ed., , John Wiley & Sons, New York pp. 16, 524, 595, 678-680Lamprecht, I., (1980) Biological Microcalorimetry, pp. 43-112. , Beezer A.E. (Ed), Academic Press, LondonMiles, R.J., Beezer, A.E., Perry, B.F., (1987) Thermal and Energetic Studies of Cellular Biological Systems, pp. 106-130. , James A.M. (Ed), IOP Publishing Ltd., BristolWadso, I., (1997) Chem. Soc. Rev., 26, pp. 79-86Monk, P.R., (1978) Process Biochem., 13, pp. 4-8Hoogerheide, J.C., (1975) Radiat. Environ. Biophys., 12, pp. 281-290James, A.M., (1987) The Thermal and Energetics Studies of Cellular Biological Systems, pp. 1-13. , James A.M. (Ed), Wright, BristolInstruction Manual LABORLAB, Enzymatic Kit for Glucose Analysis-Colorimetric Method, LABORLAB Produtos para Laboratório Ltda, Guarulhos, SP, Brasil, 2005Instruction Manual Boehringer Mannhein, Enzymatic, Kit for Ethanol Analysis-UV-method, R-Biopharm, Darmstadt, Hessen, Germany, 200
Mansonella sp. and associated Wolbachia endosymbionts in ring-tailed coatis (Nasua nasua) in periurban areas from Midwestern Brazil
Coatis (Nasua nasua) are wild carnivorous well adapted to anthropized environments especially important because they act as reservoirs hosts for many arthropod-borne zoonotic pathogens. Information about filarioids from coatis and associated Wolbachia spp. in Brazil is scant. To investigate the diversity of filarial nematodes, blood samples (n = 100 animals) were obtained from two urban areas in midwestern Brazil and analyzed using blood smears and buffy coats and cPCR assays based on the cox1, 12S rRNA, 18S rRNA, hsp70 and myoHC genes for nematodes and 16S rRNA for Wolbachia. When analyzing coati blood smears and buffy coats, 30% and 80% of the samples presented at least one microfilaria, respectively. Twenty-five cox1 sequences were obtained showing 89% nucleotide identity with Mansonella ozzardi. Phylogenetic analyses clustered cox1 sequences herein obtained within the Mansonella spp. clade. Sequences of both myoHC and two hsp70 genes showed 99.8% nucleotide identity with Mansonella sp. and clustered into a clade within Mansonella sp., previously detected in coatis from Brazil. Two blood samples were positive for Wolbachia, with a 99% nucleotide identity with Wolbachia previously found in Mansonella perstans, Mansonella ozzardi and Mansonella atelensis and in ectoparasites of the genus Pseudolynchia, Melophagus and Cimex. The study showed a high prevalence of Mansonella sp. in the coati population examined, suggesting that this animal species play a role as reservoirs of a novel, yet to be described, species within the Onchocercidae family