5,239 research outputs found

    The Use of HepRep in GLAST

    Full text link
    HepRep is a generic, hierarchical format for description of graphics representables that can be augmented by physics information and relational properties. It was developed for high energy physics event display applications and is especially suited to client/server or component frameworks. The GLAST experiment, an international effort led by NASA for a gamma-ray telescope to launch in 2006, chose HepRep to provide a flexible, extensible and maintainable framework for their event display without tying their users to any one graphics application. To support HepRep in their GUADI infrastructure, GLAST developed a HepRep filler and builder architecture. The architecture hides the details of XML and CORBA in a set of base and helper classes allowing physics experts to focus on what data they want to represent. GLAST has two GAUDI services: HepRepSvc, which registers HepRep fillers in a global registry and allows the HepRep to be exported to XML, and CorbaSvc, which allows the HepRep to be published through a CORBA interface and which allows the client application to feed commands back to GAUDI (such as start next event, or run some GAUDI algorithm). GLAST's HepRep solution gives users a choice of client applications, WIRED (written in Java) or FRED (written in C++ and Ruby), and leaves them free to move to any future HepRep-compliant event display.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages pdf, 15 figures. PSN THLT00

    A New Method for Searching for Free Fractional Charge Particles in Bulk Matter

    Get PDF
    We present a new experimental method for searching for free fractional charge in bulk matter; this new method derives from the traditional Millikan liquid drop method, but allows the use of much larger drops, 20 to 100 mm in diameter, compared to the traditional method that uses drops less than 15 mm in diameter. These larger drops provide the substantial advantage that it is then much easier to consistently generate drops containing liquid suspensions of powdered meteorites and other special minerals. These materials are of great importance in bulk searches for fractional charge particles that may have been produced in the early universe.Comment: 17 pages, 5 figures in a singl PDF file (created from WORD Doc.). Submitted to Review of Scientific Instrument

    Search for Free Fractional Electric Charge Elementary Particles

    Get PDF
    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10224.71\times10^{-22} particles per nucleon with 95% confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR

    To what extent is Gluon Confinement an empirical fact?

    Get PDF
    Experimental verifications of Confinement in hadron physics have established the absence of charges with a fraction of the electron's charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus "Quark" Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about Gluon Confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.Comment: 14 pages, 12 figures, version accepted at Few Body Physic

    Measurement of Dielectric Suppression of Bremsstrahlung

    Full text link
    In 1953, Ter-Mikaelian predicted that the bremsstrahlung of low energy photons in a medium is suppressed because of interactions between the produced photon and the electrons in the medium. This suppression occurs because the emission takes place over on a long distance scale, allowing for destructive interference between different instantaneous photon emission amplitudes. We present here measurements of bremsstrahlung cross sections of 200 keV to 20 MeV photons produced by 8 and 25 GeV electrons in carbon and gold targets. Our data shows that dielectric suppression occurs at the predicted level, reducing the cross section up to 75 percent in our data.Comment: 11 pages, format is postscript file, gzip-ed, uuencode-e

    A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry

    Full text link
    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark content of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong non-gravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO.The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The apparatus is now being constructed

    Big-Bang Nucleosynthesis and Hadronic Decay of Long-Lived Massive Particles

    Full text link
    We study the big-bang nucleosynthesis (BBN) with the long-lived exotic particle, called X. If the lifetime of X is longer than \sim 0.1 sec, its decay may cause non-thermal nuclear reactions during or after the BBN, altering the predictions of the standard BBN scenario. We pay particular attention to its hadronic decay modes and calculate the primordial abundances of the light elements. Using the result, we derive constraints on the primordial abundance of X. Compared to the previous studies, we have improved the following points in our analysis: The JETSET 7.4 Monte Carlo event generator is used to calculate the spectrum of hadrons produced by the decay of X; The evolution of the hadronic shower is studied taking account of the details of the energy-loss processes of the nuclei in the thermal bath; We have used the most recent observational constraints on the primordial abundances of the light elements; In order to estimate the uncertainties, we have performed the Monte Carlo simulation which includes the experimental errors of the cross sections and transfered energies. We will see that the non-thermal productions of D, He3, He4 and Li6 provide stringent upper bounds on the primordial abundance of late-decaying particle, in particular when the hadronic branching ratio of X is sizable. We apply our results to the gravitino problem, and obtain upper bound on the reheating temperature after inflation.Comment: 94 pages, 49 figures, to appear in Phys. Rev. D. This is a full length paper of the preprint astro-ph/040249

    The Search for Stable, Massive, Elementary Particles

    Full text link
    In this paper we review the experimental and observational searches for stable, massive, elementary particles other than the electron and proton. The particles may be neutral, may have unit charge or may have fractional charge. They may interact through the strong, electromagnetic, weak or gravitational forces or through some unknown force. The purpose of this review is to provide a guide for future searches - what is known, what is not known, and what appear to be the most fruitful areas for new searches. A variety of experimental and observational methods such as accelerator experiments, cosmic ray studies, searches for exotic particles in bulk matter and searches using astrophysical observations is included in this review.Comment: 34 pages, 8 eps figure

    Narrowing the window for millicharged particles by CMB anisotropy

    Full text link
    We calculate the cosmic microwave background (CMB) anisotropy spectrum in models with millicharged particles of electric charge q\sim 10^{-6}-10^{-1} in units of electron charge. We find that a large region of the parameter space for the millicharged particles exists where their effect on the CMB spectrum is similar to the effect of baryons. Using WMAP data on the CMB anisotropy and assuming Big Bang nucleosynthesis value for the baryon abundance we find that only a small fraction of cold dark matter, Omega_{mcp}h_0^2 < 0.007 (at 95% CL), may consists of millicharged particles with the parameters (charge and mass) from this region. This bound significantly narrows the allowed range of the parameters of millicharged particles. In models without paraphoton millicharged particles are now excluded as a dark matter candidate. We also speculate that recent observation of 511 keV gamma-rays from the Galactic bulge may be an indication that a (small) fraction of CDM is comprised of the millicharged particles.Comment: 10 pages, 3 figures; v2: journal version, references adde
    corecore