192 research outputs found

    Speech Communication

    Get PDF
    Contains research objectives and reports on one research project.Air Force Cambridge Research Laboratories, Office of Aerospace Research, U.S. Air Force, under Contract AF19(628)-3325National Science Foundation (Grant GP-2495)National Institutes of Health (Grant NB-04332-02)National Institutes of Health (Grant MH-04737-04)National Aeronautics and Space Administration (Grant NsG-496

    Influences of tongue biomechanics on speech movements during the production of velar stop consonants: a modeling study

    Get PDF
    This study explores the following hypothesis: forward looping movements of the tongue that are observed in VCV sequences are due partly to the anatomical arrangement of the tongue muscles and how they are used to produce a velar closure. The study uses an anatomically based 2D biomechanical tongue model. Tissue elastic properties are accounted for in finite-element modeling, and movement is controlled by constant-rate control parameter shifts. Tongue raising and lowering movements are produced by the model with the combined actions of the genioglossus, styloglossus and hyoglossus. Simulations of V1CV2 movements were made, where C is a velar consonant and V is [a], [i] or [u]. If V1 is one of the vowels [a] and [u], the resulting trajectories describe movements that begin to loop forward before consonant closure and continue to slide along the palate during the closure. This prediction is in agreement with classical data published in the literature. If V1 is vowel [i], we observe a small backward movement. This is also in agreement with some measurements on human speakers, but it is also in contradiction with the original data published by Houde (1967). These observations support the idea that the biomechanical properties of the tongue could be the main factor responsible for the forward loops when V1 is a back vowel. In the left [i] context, it seems that additional factors have to be taken into considerations, in order to explain the observations made on some speaker

    Speech Communication

    Get PDF
    Contains reports on three research projects.National Institutes of Health (Grant 2 ROI NS04332)National Institutes of Health (Training Grant 5 T32 NS07040)C. J. LeBel FellowshipsNational Institutes of Health (Grant 5 RO1 NS13028)National Science Foundation (Grant BNS76-80278)National Science Foundation (Grant BNS77-26871

    Speech Communication

    Get PDF
    Contains reports on two research projects.National Institutes of Health (Grant 2 ROl1 NS04332)National Institutes of Health (Training Grant 5 T32 NS07040)C.J. LeBel FellowshipsNational Science Foundation (Grant BNS77-26871

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3 and reports on nine research projects.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 5 P01 NS23734)National Institutes of Health (Grant 5 R01 NS18682)National Institutes of Health (Grant 5 RO1 NS25995)National Institutes of Health (Grant 5 R01 NS20269)National Institutes of Health (Grant 5 R01 NS20322)National Institutes of Health (Grant 5 T32 NS07047)Johnson and Johnson Foundatio

    Speech Communication

    Get PDF
    Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NS07040)National Institutes of Health (Grant 5 R01 NS04332)National Science Foundation (Grant 1ST 80-17599)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0290

    Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    Get PDF
    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (~150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands

    Communications Biophysics

    Get PDF
    Contains reports on ten research projects.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Training Grant 5 T32 NS0704)National Science Foundation (Grant BNS80-06369)National Institutes of Health (Grant 5 R01 NS11153)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 RO1 NS12846)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 1 P01 NS14092)Karmazin Foundation through the Council for the Arts at MITNational Institutes of Health (Fellowship 5 F32 NS06386)National Science Foundation (Fellowship SP179-14913)National Institutes of Health (Grant 5 RO1 NS11080
    • …
    corecore