16 research outputs found

    View Consistent Purification for Accurate Cross-View Localization

    Full text link
    This paper proposes a fine-grained self-localization method for outdoor robotics that utilizes a flexible number of onboard cameras and readily accessible satellite images. The proposed method addresses limitations in existing cross-view localization methods that struggle to handle noise sources such as moving objects and seasonal variations. It is the first sparse visual-only method that enhances perception in dynamic environments by detecting view-consistent key points and their corresponding deep features from ground and satellite views, while removing off-the-ground objects and establishing homography transformation between the two views. Moreover, the proposed method incorporates a spatial embedding approach that leverages camera intrinsic and extrinsic information to reduce the ambiguity of purely visual matching, leading to improved feature matching and overall pose estimation accuracy. The method exhibits strong generalization and is robust to environmental changes, requiring only geo-poses as ground truth. Extensive experiments on the KITTI and Ford Multi-AV Seasonal datasets demonstrate that our proposed method outperforms existing state-of-the-art methods, achieving median spatial accuracy errors below 0.50.5 meters along the lateral and longitudinal directions, and a median orientation accuracy error below 2 degrees.Comment: Accepted for ICCV 202

    Boosting 3-DoF Ground-to-Satellite Camera Localization Accuracy via Geometry-Guided Cross-View Transformer

    Full text link
    Image retrieval-based cross-view localization methods often lead to very coarse camera pose estimation, due to the limited sampling density of the database satellite images. In this paper, we propose a method to increase the accuracy of a ground camera's location and orientation by estimating the relative rotation and translation between the ground-level image and its matched/retrieved satellite image. Our approach designs a geometry-guided cross-view transformer that combines the benefits of conventional geometry and learnable cross-view transformers to map the ground-view observations to an overhead view. Given the synthesized overhead view and observed satellite feature maps, we construct a neural pose optimizer with strong global information embedding ability to estimate the relative rotation between them. After aligning their rotations, we develop an uncertainty-guided spatial correlation to generate a probability map of the vehicle locations, from which the relative translation can be determined. Experimental results demonstrate that our method significantly outperforms the state-of-the-art. Notably, the likelihood of restricting the vehicle lateral pose to be within 1m of its Ground Truth (GT) value on the cross-view KITTI dataset has been improved from 35.54%35.54\% to 76.44%76.44\%, and the likelihood of restricting the vehicle orientation to be within 11^{\circ} of its GT value has been improved from 19.64%19.64\% to 99.10%99.10\%.Comment: Accepted to ICCV 202

    Satellite Image Based Cross-view Localization for Autonomous Vehicle

    Full text link
    Existing spatial localization techniques for autonomous vehicles mostly use a pre-built 3D-HD map, often constructed using a survey-grade 3D mapping vehicle, which is not only expensive but also laborious. This paper shows that by using an off-the-shelf high-definition satellite image as a ready-to-use map, we are able to achieve cross-view vehicle localization up to a satisfactory accuracy, providing a cheaper and more practical way for localization. While the utilization of satellite imagery for cross-view localization is an established concept, the conventional methodology focuses primarily on image retrieval. This paper introduces a novel approach to cross-view localization that departs from the conventional image retrieval method. Specifically, our method develops (1) a Geometric-align Feature Extractor (GaFE) that leverages measured 3D points to bridge the geometric gap between ground and overhead views, (2) a Pose Aware Branch (PAB) adopting a triplet loss to encourage pose-aware feature extraction, and (3) a Recursive Pose Refine Branch (RPRB) using the Levenberg-Marquardt (LM) algorithm to align the initial pose towards the true vehicle pose iteratively. Our method is validated on KITTI and Ford Multi-AV Seasonal datasets as ground view and Google Maps as the satellite view. The results demonstrate the superiority of our method in cross-view localization with median spatial and angular errors within 11 meter and 11^\circ, respectively.Comment: Accepted by ICRA202

    The Bus Transit System: Its Underutilized Potential

    Get PDF
    The bus system represents the most widely used transit mode. Upgraded bus services, primarily those which have partially or fully separated rights-of-way, represent a very cost effective method to improve the balance between automobile and transit. Many measures for improving bus services were introduced since 1970. However, many of these improvements were not maintained: buses were gradually returned to operations in mixed traffic. The report examines the quality of bus services in various cities in North America and worldwide and analyzes the reasons for the phenomenon of “backsliding” or disappearance of bus transit priority measures

    Effects of Secondary Metabolites from Pea on Fusarium Growth and Mycotoxin Biosynthesis

    No full text
    Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate no/very low amounts of mycotoxins. The ability of the host plant to modulate the biosynthesis of these toxins is entirely depending on the secondary metabolites produced by the plant, often as a part of systemic acquired resistance (SAR). A major role plays in the family of metabolites called phenyl propanoids, consisting of thousands of natural products, synthesized from the phenylalanine or tyrosine amino acids through a cascade of enzymatic reactions. They are also famous for inhibiting or limiting infection through their antioxidant characteristics. The current study was aimed at identifying the differentially expressed secondary metabolites in resistant (Sokolik) and susceptible (Santana) cultivars of pea (Pisum sativum L.) and understanding their roles in the growth and mycotoxin biosynthesis of two different Fusarium species. Although metabolites such as coumarin, spermidine, p-coumaric acid, isoorientin, and quercetin reduced the growth of the pathogen, a higher level of p-coumaric acid was found to enhance the growth of F. proliferatum strain PEA1. It was also noticeable that the growth of the pathogen did not depend on their ability to produce mycotoxins, as all the metabolites were able to highly inhibit the biosynthesis of fumonisin B1 and beauvericin

    Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions

    No full text
    Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection

    Induction of Fusarium lytic Enzymes by Extracts from Resistant and Susceptible Cultivars of Pea (Pisum sativum L.)

    No full text
    Being pathogenic fungi, Fusarium produce various extracellular cell wall-degrading enzymes (CWDEs) that degrade the polysaccharides in the plant cell wall. They also produce mycotoxins that contaminate grains, thereby posing a serious threat to animals and human beings. Exposure to mycotoxins occurs through ingestion of contaminated grains, inhalation and through skin absorption, thereby causing mycotoxicoses. The toxins weaken the host plant, allowing the pathogen to invade successfully, with the efficiency varying from strain to strain and depending on the plant infected. Fusariumoxysporum predominantly produces moniliformin and cyclodepsipeptides, whereas F. proliferatum produces fumonisins. The aim of the study was to understand the role of various substrates and pea plant extracts in inducing the production of CWDEs and mycotoxins. Additionally, to monitor the differences in their levels when susceptible and resistant pea plant extracts were supplemented. The cultures of F. proliferatum and F. oxysporum strains were supplemented with various potential inducers of CWDEs. During the initial days after the addition of substrates, the fungus cocultivated with pea extracts and other carbon substrates showed increased activities of β-glucosidase, xylanase, exo-1,4-glucanase and lipase. The highest inhibition of mycelium growth (57%) was found in the cultures of F. proliferatum strain PEA1 upon the addition of cv. Sokolik extract. The lowest fumonisin content was exhibited by the cultures with the pea extracts and oat bran added, and this can be related to the secondary metabolites and antioxidants present in these substrates

    Effects of Secondary Metabolites from Pea on <i>Fusarium</i> Growth and Mycotoxin Biosynthesis

    No full text
    Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate no/very low amounts of mycotoxins. The ability of the host plant to modulate the biosynthesis of these toxins is entirely depending on the secondary metabolites produced by the plant, often as a part of systemic acquired resistance (SAR). A major role plays in the family of metabolites called phenyl propanoids, consisting of thousands of natural products, synthesized from the phenylalanine or tyrosine amino acids through a cascade of enzymatic reactions. They are also famous for inhibiting or limiting infection through their antioxidant characteristics. The current study was aimed at identifying the differentially expressed secondary metabolites in resistant (Sokolik) and susceptible (Santana) cultivars of pea (Pisum sativum L.) and understanding their roles in the growth and mycotoxin biosynthesis of two different Fusarium species. Although metabolites such as coumarin, spermidine, p-coumaric acid, isoorientin, and quercetin reduced the growth of the pathogen, a higher level of p-coumaric acid was found to enhance the growth of F. proliferatum strain PEA1. It was also noticeable that the growth of the pathogen did not depend on their ability to produce mycotoxins, as all the metabolites were able to highly inhibit the biosynthesis of fumonisin B1 and beauvericin
    corecore