723 research outputs found
Stress transfer and strain rate variations during the seismic cycle
The balance of forces implies stress transfers during the seismic cycle between the elastobrittle upper crust and the viscoelastic lower crust. This could induce observable time variations of crustal straining in the interseismic period. We simulate these variations using a one-dimensional system of springs, sliders, and dashpot loaded by a constant force. The seismogenic zone and the zone of afterslip below are modeled from rate-and-state friction. The ductile deeper fault zone is modeled from a viscous slider with Newtonian viscosity Îœ. The force per unit length, F, must exceed a critical value F_c to overcome friction resistance of the fault system. This simple system produces periodic earthquakes. The recurrence period, T_(cycle), and the duration of the postseismic relaxation phase, which is driven dominantly by afterslip, then both scale linearly with Îœ. Between two earthquakes, interseismic strain buildup across the whole system is nonstationary with the convergence rates V_i, just after each earthquake, being systematically higher than the value V_f at the end of the interseismic period. We show that V_i/V_f is an exponential function of α = T_(cycle)/T_M â ÎÏ/(F â F_c ) â ÎÏ/(ÎœV_ 0), where ÎÏ is the coseismic stress drop and V_0 is the long-term fault slip rate. It follows that departure from stationary strain buildup is higher if the contribution of viscous forces to the force balance is small compared to the coseismic stress drop (due to a low viscosity or low convergence rate, for example). This simple model is meant to show that the far-field deformation rate in the interseismic period, which can be determined from geodetic measurements, might not necessarily be uniform and equal to the long-term geologic rate
Geodetic displacements and aftershocks following the 2001 M_w = 8.4 Peru earthquake: Implications for the mechanics of the earthquake cycle along subduction zones
We analyzed aftershocks and postseismic deformation recorded by the continuous GPS station AREQ following the M_w = 8.4, 23 June 2001 Peru earthquake. This station moved by 50 cm trenchward, in a N235°E direction during the coseismic phase, and continued to move in the same direction for an additional 15 cm over the next 2 years. We compare observations with the prediction of a simple one-dimensional (1-D) system of springs, sliders, and dashpot loaded by a constant force, meant to simulate stress transfer during the seismic cycle. The model incorporates a seismogenic fault zone, obeying rate-weakening friction, a zone of deep afterslip, the brittle creep fault zone (BCFZ) obeying rate-strengthening friction, and a zone of viscous flow at depth, the ductile fault zone (DFZ). This simple model captures the main features of the temporal evolution of seismicity and deformation. Our results imply that crustal strain associated with stress accumulation during the interseismic period is probably not stationary over most of the interseismic period. The BCFZ appears to control the early postseismic response (afterslip and aftershocks), although an immediate increase, by a factor of about 1.77, of ductile shear rate is required, placing constraints on the effective viscosity of the DFZ. Following a large subduction earthquake, displacement of inland sites is trenchward in the early phase of the seismic cycle and reverse to landward after a time t i for which an analytical expression is given. This study adds support to the view that the decay rate of aftershocks may be controlled by reloading due to deep afterslip. Given the ratio of preseismic to postseismic viscous creep, we deduce that frictional stresses along the subduction interface account for probably 70% of the force transmitted along the plate interface
Modeling afterslip and aftershocks following the 1992 Landers earthquake
One way to probe the rheology of the lithosphere and fault zones is to analyze the temporal evolution of deformation following a large earthquake. In such a case, the lithosphere responds to a known stress change that can be assessed from earthquake slip models constrained from seismology and geodesy. Here, we model the postseismic response of a fault zone that is assumed to obey a rate-strengthening rheology, where the frictional stress varies as aÏ ln(Δ), Δ being the deformation rate and aÏ > 0 a rheological parameter. The model is simple enough that these parameters can be estimated by inversion of postseismic geodetic data. We apply this approach to the analysis of geodetic displacements following the M_w 7.3, 1992, Landers earthquake. The model adjusts well the measured displacements and implies aÏ â 0.47â0.53 MPa. In addition, we show that aftershocks and afterslip follow the same temporal evolution and that the spatiotemporal distribution of aftershocks is consistent with the idea that they are driven by reloading of the seismogenic zone resulting from frictional afterslip
Dynamics of a velocity strengthening fault region: Implications for slow earthquakes and postseismic slip
We consider the effect of permanent stress changes on a velocity strengthening rate-and-state fault, through numerical simulations and analytical results on 1-D, 2-D, and 3-D models. We show that slip transients can be triggered by perturbations of size roughly larger than Lb = Gdc/bÏ, where G is the shear modulus, dc and b are the characteristic slip distance and the coefficient of the evolution effect of rate-and-state friction, respectively, and Ï is the effective normal stress. Perturbations that increase the Coulomb stress lead to the strongest transients, but creep bursts can also be triggered by perturbations that decrease the Coulomb stress. In the latter case, peak slip velocity is attained long after the perturbation, so that it may be difficult in practice to identify their origin. The evolution of slip in a creep transient shares many features with the nucleation process of a rate-and-state weakening fault: slip initially localizes over a region of size not smaller than Lb and then accelerates transiently and finally expands as a quasi-static propagating crack. The characteristic size Lb implies a constraint on the grid resolution of numerical models, even on strengthening faults, that is more stringent than classical criteria. In the transition zone between the velocity weakening and strengthening regions, the peak slip velocity may be arbitrarily large and may approach seismic slip velocities. Postseismic slip may represent the response of the creeping parts of the fault to a stress perturbation of large scale (comparable to the extent of the main shock rupture) and high amplitude, while slow earthquakes may represent the response of the creeping zones to a more localized stress perturbation. Our results indicate that superficial afterslip, observed at usually seismogenic depths, is governed by a rate-strengthening rheology and is not likely to correspond to stable weakening zones. The predictions of the full rate-and-state framework reduce to a pure velocity strengthening law on a timescale longer than the duration of the acceleration transient, only when the triggering perturbation extends over length scales much larger than Lb
The seismic cycle in the area of the 2011 M_w9.0 Tohoku-Oki earthquake
We model seismic and aseismic slip on the Japan megathrust in the area of the M_w9.0, 2011 Tohoku-Oki earthquake based on daily time series from 400 GPS stations of the GEONET network and campaign measurements of six sea floor displacements. The coseismic and postseismic slip distributions are inverted simultaneously using principal component analysis-based inversion method (PCAIM). Exploring a wide range of boundary conditions and regularization constraints, we found the coseismic slip distribution to be quite compact with a peak slip between 30 and 50 m near the trench. Our model shows deep afterslip fringing the downdip edge of the coseismic rupture but also a dominant zone of shallow afterslip. Afterslip over the first 279 days following the main shock represents about 40% of the coseismic moment. We compare the coseismic and postseismic models with an interseismic coupling model derived from inland and sea bottom measurements determined in a self-consistent manner. Assuming that seismic and aseismic slip had to match the long-term slip rate along the megathrust, the recurrence time of M_w9.0 earthquakes is estimated to 100â300 years, while historical and paleotsunami records suggest a return period more of the order of 1000 years. The discrepancy is smaller if the shallower portion of the megathrust is assumed to produce both aseismic slip, as the afterslip model suggests, and seismic slip during occasional large tsunamigenic earthquakes
Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan
We evaluate the effect of coseismic stress changes on the fault slip at midcrustal depth, assuming a velocity-strengthening brittle creep rheology. We show that this model can help reconcile the time evolution of afterslip, as measured from geodesy, with aftershocks decay. We propose an analytical expression for slip of the brittle creeping fault zone (BCFZ) that applies to any dynamic or static stress perturbation, including shear stress and normal stress changes. The model predicts an initial logarithmic increase of slip with time. Postseismic slip rate decays over a characteristic time t_r = aÏ/Ï that does not depend on the amplitude of the stress perturbation, and it asymptotically joins the long-term creep imposed by interseismic stress buildup Ï. Given that the seismicity rate might be considered proportional to the sliding velocity of the BCFZ, the model predicts a decay rate of aftershocks that follows Omori's law, with a mathematical formalism identical to that of Dieterich [1994] although based on a different mechanical rationale. Our model also differs from Dieterich's model in that it requires that aftershock sequences and deep afterslip, as constrained from geodetic measurements, should follow the same temporal evolution. We test this for the 1999 Chi-Chi earthquake, M_w = 7.6 and find that both sets of data are consistent with a model of afterslip due to the response of the BCFZ. The inferred relaxation time t_r = 8.5 years requires a value for a = âÎŒ/âlog(V) (ÎŒ being the coefficient of friction) in the range between 1.3 10^(â3) and 10^(â2)
Interseismic coupling and seismic potential along the Central Andes subduction zone
We use about two decades of geodetic measurements to characterize interseismic strain build up along the Central Andes subduction zone from Lima, Peru, to Antofagasta, Chile. These measurements are modeled assuming a 3-plate model (Nazca, Andean sliver and South America Craton) and spatially varying interseismic coupling (ISC) on the Nazca megathrust interface. We also determine slip models of the 1996 M_w = 7.7 Nazca, the 2001 M_w = 8.4 Arequipa, the 2007 M_w = 8.0 Pisco and the M_w = 7.7 Tocopilla earthquakes. We find that the data require a highly heterogeneous ISC pattern and that, overall, areas with large seismic slip coincide with areas which remain locked in the interseismic period (with high ISC). Offshore Lima where the ISC is high, a M_wâŒ8.6â8.8 earthquake occurred in 1746. This area ruptured again in a sequence of four M_wâŒ8.0 earthquakes in 1940, 1966, 1974 and 2007 but these events released only a small fraction of the elastic strain which has built up since 1746 so that enough elastic strain might be available there to generate a M_w > 8.5 earthquake. The region where the Nazca ridge subducts appears to be mostly creeping aseismically in the interseismic period (low ISC) and seems to act as a permanent barrier as no large earthquake ruptured through it in the last 500 years. In southern Peru, ISC is relatively high and the deficit of moment accumulated since the M_wâŒ8.8 earthquake of 1868 is equivalent to a magnitude M_wâŒ8.4 earthquake. Two asperities separated by a subtle aseismic creeping patch are revealed there. This aseismic patch may arrest some rupture as happened during the 2001 Arequipa earthquake, but the larger earthquakes of 1604 and 1868 were able to rupture through it. In northern Chile, ISC is very high and the rupture of the 2007 Tocopilla earthquake has released only 4% of the elastic strain that has accumulated since 1877. The deficit of moment which has accumulated there is equivalent to a magnitude M_wâŒ8.7 earthquake. This study thus provides elements to assess the location, size and magnitude of future large megathurst earthquakes in the Central Andes subduction zone. Caveats of this study are that interseismic strain of the forearc is assumed time invariant and entirely elastic. Also a major source of uncertainty is due to fact that the available data place very little constraints on interseismic coupling at shallow depth near the trench, except offshore Lima where sea bottom geodetic measurements have been collected suggesting strong coupling
Effect of Chlamydia trachomatis infection and subsequent TNFa secretion on apoptosis in the murine genital tract
The pathology observed during Chlamydia infection is due initially to localized tissue damage caused by the infection itself, followed by deleterious host inflammatory responses that lead to permanent scarring. We have recently reported that the infection byChlamydia in vitro results in apoptosis of epithelial cells and macrophages and that infected monocytes secrete the proinflammatory cytokine interleukin-1ÎČ. At the same time, proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) can also trigger apoptosis of susceptible cells. To study the possible relationship between Chlamydia trachomatis infection and apoptosis in vivo, we used the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling technique to determine whether infection may cause apoptosis in the genital tract of mice and, conversely, whether cytokines produced during the inflammatory response may modulate the level of apoptosis. Our results demonstrate that infected cells in the endocervix at day 2 or 7 after infection are sometimes apoptotic, although there was not a statistically significant change in the number of apoptotic cells in the endocervix. However, large clumps of apoptotic infected cells were observed in the lumen, suggesting that apoptotic cells may be shed from the endocervix. Moreover, there was a large increase in the number of apoptotic cells in the uterine horns and oviducts after 2 or 7 days of infection, which was accompanied by obvious signs of upper tract pathology. Interestingly, depletion of TNF-α led to a decrease in the level of apoptosis in the uterine horns and oviducts of animals infected for 7 days, suggesting that the inflammatory cytokines may exert part of their pathological effect via apoptosis in infected tissues
- âŠ