86 research outputs found
Serotonergic Polymorphisms and Psychotic Disorders in Populations From North Spain
There is strong biological evidence relating alterations in the serotonergic
system with mental disorders. These alterations may be originated at the DNA
level by sequence mutations that alter the functioning of serotonin receptors and
transporter. To test this hypothesis we investigated three genetic variants of
the 5-HT2A receptor (-1438G/A, 102T/C and His452Tyr) and two variants of the
serotonin transporter (a VNTR in the second intron and a 44 bp insertion/delition
in the promoter region of the gene) in a clinical sample recruited in a human
isolate and in surrounding areas in Northern Spain (N = 257) and in ethnically
matched controls (N = 334). No clear association was found between 5-HT2A
variants and psychosis. However, marginal associations were observed between the
5-HTT LPR and VNTR variants and psychosis (P < or = 0.05) indicating a minor
contribution to psychosis of genetic alterations in this gene
The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity
Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions. This signaling involves close physical contacts between the two organelles that are mediated by âtethering proteinsâ that function to recruit regions of ER to the mitochondrial surface. The ER protein, vesicle-associated membrane protein-associated protein B (VAPB) and the mitochondrial membrane protein, protein tyrosine phosphatase interacting protein-51 (PTPIP51), interact to form one such tether. Recently, damage to ER-mitochondria signaling involving disruption of the VAPB-PTPIP51 tethers has been linked to the pathogenic process in Parkinsonâs disease, fronto-temporal dementia (FTD) and related amyotrophic lateral sclerosis (ALS). Loss of neuronal synaptic function is a key feature of Parkinsonâs disease and FTD/ALS but the roles that ER-mitochondria signaling and the VAPB-PTPIP51 tethers play in synaptic function are not known. Here, we demonstrate that the VAPB-PTPIP51 tethers regulate synaptic activity. VAPB and PTPIP51 localise and form contacts at synapses, and stimulating neuronal activity increases ER-mitochondria contacts and the VAPB-PTPIP51 interaction. Moreover, siRNA loss of VAPB or PTPIP51 perturbs synaptic function and dendritic spine morphology. Our results reveal a new role for the VAPB-PTPIP51 tethers in neurons and suggest that damage to ER-mitochondria signaling contributes to synaptic dysfunction in Parkinsonâs disease and FTD/ALS
Molecular abnormalities in autopsied brain tissue from the inferior horn of the lateral ventricles of nonagenarians and Alzheimer disease patients
Background The ventricular system plays a vital role in blood-cerebrospinal fluid (CSF) exchange and interstitial fluid-CSF drainage pathways. CSF is formed in the specialized secretory tissue called the choroid plexus, which consists of epithelial cells, fenestrated capillaries and the highly vascularized stroma. Very little is currently known about the role played by the ventricles and the choroid plexus tissue in aging and Alzheimer's disease (AD). MethodsIn this study, we used our state-of-the-art proteomic platform, a liquid chromatography/mass spectrometry (LC-MS/MS) approach coupled with Tandem Mass Tag isobaric labeling to conduct a detailed unbiased proteomic analyses of autopsied tissue isolated from the walls of the inferior horn of the lateral ventricles in AD (77.2 ± 0.6âyrs), age-matched controls (77.0 ± 0.5âyrs), and nonagenarian cases (93.2 ± 1.1âyrs). ResultsIngenuity pathway analyses identified phagosome maturation, impaired tight-junction signaling, and glucose/mannose metabolism as top significantly regulated pathways in controls vs nonagenarians. In matched-control vs AD cases we identified alterations in mitochondrial bioenergetics, oxidative stress, remodeling of epithelia adherens junction, macrophage recruitment and phagocytosis, and cytoskeletal dynamics. Nonagenarian vs AD cases demonstrated augmentation of oxidative stress, changes in gluconeogenesis-glycolysis pathways, and cellular effects of choroidal smooth muscle cell vasodilation. Amyloid plaque score uniquely correlated with remodeling of epithelial adherens junctions, Fc Îł-receptor mediated phagocytosis, and alterations in RhoA signaling. Braak staging was uniquely correlated with altered iron homeostasis, superoxide radical degradation and phagosome maturation. Conclusions These changes provide novel insights to explain the compromise to the physiological properties and function of the ventricles/choroid plexus system in nonagenarian aging and AD pathogenesis. The pathways identified could provide new targets for therapeutic strategies to mitigate the divergent path towards AD
A search for spectral hysteresis and energy-dependent time lags from X-ray and TeV gamma-ray observations of Mrk 421
Blazars are variable emitters across all wavelengths over a wide range of
timescales, from months down to minutes. It is therefore essential to observe
blazars simultaneously at different wavelengths, especially in the X-ray and
gamma-ray bands, where the broadband spectral energy distributions usually
peak.
In this work, we report on three "target-of-opportunity" (ToO) observations
of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring
event at TeV energies in 2014. These observations feature long, continuous, and
simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet
bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous
observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number
of radio and optical facilities. Although neither rapid flares nor significant
X-ray/TeV correlation are detected, these observations reveal subtle changes in
the X-ray spectrum of the source over the course of a few days. We search the
simultaneous X-ray and TeV data for spectral hysteresis patterns and time
delays, which could provide insight into the emission mechanisms and the source
properties (e.g. the radius of the emitting region, the strength of the
magnetic field, and related timescales). The observed broadband spectra are
consistent with a one-zone synchrotron self-Compton model. We find that the
power spectral density distribution at Hz from the
X-ray data can be described by a power-law model with an index value between
1.2 and 1.8, and do not find evidence for a steepening of the power spectral
index (often associated with a characteristic length scale) compared to the
previously reported values at lower frequencies.Comment: 45 pages, 15 figure
Nanoscale structure of amyloid-ÎČ plaques in Alzheimerâs disease
Abstract Soluble amyloid-ÎČ (AÎČ) is considered to be a critical component in the pathogenesis of Alzheimerâs disease (AD). Evidence suggests that these non-fibrillar AÎČ assemblies are implicated in synaptic dysfunction, neurodegeneration and cell death. However, characterization of these species comes mainly from studies in cellular or animal models, and there is little data in intact human samples due to the lack of adequate optical microscopic resolution to study these small structures. Here, to achieve super-resolution in all three dimensions, we applied Array Tomography (AT) and Stimulated Emission Depletion microscopy (STED), to characterize in postmortem human brain tissue non-fibrillar AÎČ structures in amyloid plaques of cases with autosomal dominant and sporadic AD. Ultrathin sections scanned with super-resolution STED microscopy allowed the detection of small AÎČ structures of the order of 100ânm. We reconstructed a whole human amyloid plaque and established that plaques are formed by a dense core of higher order AÎČ species (~0.022â”m3) and a peripheral halo of smaller AÎČ structures (~0.003â”m3). This work highlights the potential of AT-STED for human neuropathological studies
Reactive astrocyte nomenclature, definitions, and future directions
Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
Observations of the Crab Nebula and Pulsar with the Large-sized Telescope Prototype of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is a next-generation ground-based observatory for gamma-ray astronomy at very high energies. The Large-Sized Telescope prototype (LST-1) is located at the CTA-North site, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to â20 GeV. LST-1 started performing astronomical observations in 2019 November, during its commissioning phase, and it has been taking data ever since. We present the first LST-1 observations of the Crab Nebula, the standard candle of very-high-energy gamma-ray astronomy, and use them, together with simulations, to assess the performance of the telescope. LST-1 has reached the expected performance during its commissioning periodâonly a minor adjustment of the preexisting simulations was needed to match the telescopeâs behavior. The energy threshold at trigger level is around 20 GeV, rising to â30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.°12-0.°40, and energy resolution from 15%-50%. Flux sensitivity is around 1.1% of the Crab Nebula flux above 250 GeV for a 50 hr observation (12% for 30 minutes). The spectral energy distribution (in the 0.03-30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula
A new era for understanding amyloid structures and disease
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-ÎČ structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention
- âŠ