1,439 research outputs found
Biogenic synthesis of metal nanoparticles using a biosurfactant extracted from corn and their antimicrobial properties
A new and promising biosurfactant extracted from corn steep liquor has been used for the green synthesis of gold and silver nanoparticles (NPs) in a one-step procedure induced by temperature. Most of the biosurfactants proposed in the literature are produced by pathogenic microorganisms; whereas the biosurfactant used in the current work was extracted from a liquid stream, fermented spontaneously by lactic acid bacteria, which are generally recognized as safe (GRAS) microorganisms. The reduction of a gold precursor in the presence of a biosurfactant gives rise to a mixture of nanospheres and nanoplates with distinct optical features. Moreover, the growth of nanoplates can be promoted by increasing the reaction temperature to 60 °C. In the case of silver, the biosurfactant just induces the formation of pseudo-spherical NPs. The biosurfactant plays a key role in the reduction of the metal precursor, as well as in the stabilization of the resulting NPs. Furthermore, the antimicrobial activity of the resulting silver colloids has been analyzed against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The biosurfactant stabilized NPs slightly increased the inhibition of E. coli in comparison with citrate stabilized Ag NPs. The use of this biosurfactant extracted from corn steep liquor for the synthesis of metal NPs contributes to enhancing the application of green technologies and increasing the utilization of clean, non-toxic and environmentally safe production processes. Therefore, it can help to reduce environmental impact, minimize waste and increase energy efficiency in the field of nanomaterials.This work was supported by the Spanish MINECO (MAT2013-45168-R and MAT2016-77809-R) and Fundación Ramón Areces. Also, Xanel Vecino gratefully acknowledges her post-doctoral grant (SFRH/BPD/101476/2014) supported by the Portuguese Foundation for Science and Technology (FCT, Portugal).info:eu-repo/semantics/publishedVersio
Bolaform surfactantâinduced Au nanoparticle assemblies for reliable solutionâbased surfaceâenhanced Raman scattering detection
Financiado para publicaciĂłn en acceso aberto: Universidade de Vigo/CISUGSolution-based surface-enhanced Raman scattering (SERS) detection typically involves the aggregation of citrate-stabilized Au nanoparticles into colloidal assemblies. Although this sensing methodology offers excellent prospects for sensitivity, portability, and speed, it is still challenging to control the assembly process by a salting-out effect, which affects the reproducibility of the assemblies and, therefore, the reliability of the analysis. This work presents an alternative approach that uses a bolaform surfactant, B20, to induce the plasmonic assembly. The decrease of the surface charge and the bridging effect, both promoted by the adsorption of B20, are hypothesized as the key points governing the assembly. Furthermore, molecular dynamic simulations supported the bridging effect of the B20 by showing the preferential bridging of surfactant monomers between two adjacent Au(111) slabs. The colloidal assemblies showed excellent SERS capabilities towards the rapid, on-site detection and quantification of beta-blockers and analgesic drugs in the nanomolar regime, with a portable Raman device. Interestingly, the application of state-of-the-art convolutional neural networks, such as ResNet, allows a 100% accuracy in classifying the concentration of different binary mixtures. Finally, the colloidal approach was successfully implemented in a millifluidic chip allowing the automation of the whole process, as well as improving the performance of the sensor in terms of speed, reliability, and reusability without affecting its sensitivity.MCIN/AEI/10.13039/501100011033 | Ref. PID2019-108954RB-I00MCIN/AEI/10.13039/501100011033 | Ref. PID2019-106960GB-I00MCIN/AEI/10.13039/501100011033 | Ref. BES-2017-08167MEC/AEI | Ref. CTQ2017-84354-PXunta de Galicia | Ref. GRC ED431C 2020/09Xunta de Galicia | Ref. GR 2007/08
Histidineâmediated synthesis of chiral cobalt oxide nanoparticles for enantiomeric discrimination and quantification
Chiral transition metal oxide nanoparticles (CTMOs) are attracting a lot of attention due to their fascinating properties. Nevertheless, elucidating the chirality induction mechanism often remains a major challenge. Herein, the synthesis of chiral cobalt oxide nanoparticles mediated by histidine (Co3O4@L-His and Co3O4@D-His for nanoparticles synthesized in the presence of L- and D-histidine, respectively) is investigated. Interestingly, these CTMOs exhibit remarkable and tunable chiroptical properties. Their analysis by x-ray photoelectron, Fourier transform infrared, and ultraviolet-visible absorption spectroscopy indicates that the ratio of Co2+/Co3+ and their interactions with the imidazole groups of histidine are behind their chiral properties. In addition, the use of chiral Co3O4 nanoparticles for the development of sensitive, rapid, and enantioselective circular dichroism-based sensors is demonstrated, allowing direct molecular detection and discrimination between cysteine or penicillamine enantiomers. The circular dichroism response of the chiral Co3O4 exhibits a limit of detection and discrimination of cysteine and penicillamine enantiomers as low as 10 ”m. Theoretical calculations suggest that the ligand exchange and the coexistence of both species adsorbed on the oxide surface are responsible for the enantiomeric discrimination. This research will enrich the synthetic approaches to obtain CTMOs and enable the extension of the applications and the discovery of new chiroptical properties.National Natural Science Foundation of China | Ref. 22271257Agencia Estatal de Investigación | Ref. PID2019-108954RB-I00Xunta de Galicia | Ref. ED431C 2020/09Universidade de Vigo/CISU
Synthesis of tuneable gold nanostars: the role of adenosine monophosphate
The seed-mediated growth of gold nanostructures is known to be strongly dependent not only on the gold seed nanocrystal structure but also on the presence of different additives that may influence the morphology, and therefore the crystalline structure of the final nanoparticle. Among the different additives or capping ligands, biomolecules are an interesting family due to their potential biomedical applications such as drug delivery, bioimaging, biosensing, phototherapy, and antimicrobial activities. Here, we develop a seed-mediated strategy for synthesizing uniform Au nanostars with tuneable optical properties which involves adenosine monophosphate (AMP) as a capping ligand. The experimental data reveal the key role of AMP not just providing colloidal stability and directing the reduction of the gold precursor via complexation but also mediating the anisotropic growth of the Au seeds via its selective adsorption on the different crystalline facets of Au nanoparticles. These observations agree with theoretical simulations carried out using molecular dynamics and density functional theory (DFT) calculations. Interestingly, the obtained Au nanostars showed high thermal stability as well as colloidal stability in polar organic solvents, which allowed their direct silica coating via the Stöber method. Importantly, we also explored the mimic enzymatic activity of the resulting gold nanostars and observed a superior catalytic activity compared with other gold nanoparticles reported in the literature.Agencia Estatal de InvestigaciĂłn | Ref. PID2019-108954RB-I00Xunta de Galicia | Ref. ED431C 2020/09Fundação para a CiĂȘncia e a Tecnologia | Ref. UIDB/50006/2020Fundação para a CiĂȘncia e a Tecnologia | Ref. UIDP/50006/2020Fundação para a CiĂȘncia e a Tecnologia | Ref. EXPL/QUI-COL/0263/2021Universidade de Vigo/CISU
On the age of the hominid fossils at the Sima de los Huesos, Sierra de Atapuerca, Spain: paleomagnetic evidence
We report new paleomagnetic data for the Middle Pleistocene hominid-bearing strata in the Sima de los Huesos, North Spain. Sediments (brown muds with human and bear fossils and the underlying sterile clayey and sandy unit) preserve both normal and reversed magnetic components. The sterile unit has exclusively reversed magnetization, dating back to the Matuyama Chron, and thus is Lower Pleistocene in age. The overlying fossiliferous muds have a dominant normal magnetization that overprints a partially resolved reversed magnetization. These data are compatible with one of the reversal events that occurred during the Brunhes Chron. Combined with the existing U-series dates and evidence from the macro- and microfauna, these paleomagnetic results suggest an age of the hominid fossils between 325 to 205 ka, whereas the underlying sand and silts are older than 780 ka.This research was supported by DGES grants PB96-0815 and PB96-1026-C03, and by the Unidad Asociada CSIC-UCM.Peer reviewe
Reversible assembly of metal nanoparticles induced by penicillamine. Dynamic formation of SERS hot spots
We report a systematic study of the surface modification of gold and silver nanoparticles with dl-penicillamine (PEN) and N-acetyl-dl-penicillamine (NAP), motivated by the possibility of inducing pH-controlled reversible nanoparticle assembly. The interaction of PEN and NAP with the metal nanoparticle surface was studied by isothermal titration calorimetry (ITC). The results indicate that equilibrium is reached with the formation of a submonolayer corresponding to ca. 40% and 64% of total surface coverage for PEN and NAP, respectively. Both PEN and NAP modified nanoparticles could be reversibly aggregated at acidic pH due to the protonation of the carboxylic groups, leading to a decrease in their stability by electrostatic interactions and the advent of hydrogen bonding interactions which promote interparticle linkage. The process was monitored by UV-Vis spectroscopy, transmission electron microscopy (TEM) and surface enhanced Raman scattering (SERS) spectroscopy. Interestingly, the SERS characterization demonstrated the pH-controlled formation of hot-spots
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
- âŠ