21 research outputs found

    A metabolomics characterisation of natural variation in the resistance of cassava to whitefly

    Get PDF
    Background: Cassava whitefly outbreaks were initially reported in East and Central Africa cassava (Manihot esculenta Crantz) growing regions in the 1990's and have now spread to other geographical locations, becoming a global pest severely affecting farmers and smallholder income. Whiteflies impact plant yield via feeding and vectoring cassava mosaic and brown streak viruses, making roots unsuitable for food or trading. Deployment of virus resistant varieties has had little impact on whitefly populations and therefore development of whitefly resistant varieties is also necessary as part of integrated pest management strategies. Suitable sources of whitefly resistance exist in germplasm collections that require further characterization to facilitate and assist breeding programs. Results: In the present work, a hierarchical metabolomics approach has been employed to investigate the underlying biochemical mechanisms associated with whitefly resistance by comparing two naturally occurring accessions of cassava, one susceptible and one resistant to whitefly. Quantitative differences between genotypes detected at pre-infestation stages were consistently observed at each time point throughout the course of the whitefly infestation. This prevalent differential feature suggests that inherent genotypic differences override the response induced by the presence of whitefly and that they are directly linked with the phenotype observed. The most significant quantitative changes relating to whitefly susceptibility were linked to the phenylpropanoid super-pathway and its linked sub-pathways: monolignol, flavonoid and lignan biosynthesis. These findings suggest that the lignification process in the susceptible variety is less active, as the susceptible accession deposits less lignin and accumulates monolignol intermediates and derivatives thereof, differences that are maintained during the time-course of the infestation. Conclusions: Resistance mechanism associated to the cassava whitefly-resistant accession ECU72 is an antixenosis strategy based on reinforcement of cell walls. Both resistant and susceptible accessions respond differently to whitefly attack at biochemical level, but the inherent metabolic differences are directly linked to the resistance phenotype rather than an induced response in the plant

    Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis

    Get PDF
    Isoprenoids, including dolichols (Dols) and polyprenols (Prens), are ubiquitous components of eukaryotic cells. In plant cells, there are two pathways that produce precursors utilized for isoprenoid biosynthesis: the mevalonate (MVA) pathway and the methylerythritol phosphate (MEP) pathway. In this work, the contribution of these two pathways to the biosynthesis of Prens and Dols was addressed using an in planta experimental model. Treatment of plants with pathway-specific inhibitors and analysis of the effects of various light conditions indicated distinct biosynthetic origin of Prens and Dols. Feeding with deuteriated, pathway-specific precursors revealed that Dols, present in leaves and roots, were derived from both MEP and MVA pathways and their relative contributions were modulated in response to precursor availability. In contrast, Prens, present in leaves, were almost exclusively synthesized via the MEP pathway. Furthermore, results obtained using a newly introduced here ‘competitive’ labeling method, designed so as to neutralize the imbalance of metabolic flow resulting from feeding with a single pathway-specific precursor, suggest that under these experimental conditions one fraction of Prens and Dols is synthesized solely from endogenous precursors (deoxyxylulose or mevalonate), while the other fraction is synthesized concomitantly from endogenous and exogenous precursors. Additionally, this report describes a novel methodology for quantitative separation of 2H and 13C distributions observed for isotopologues of metabolically labeled isoprenoids. Collectively, these in planta results show that Dol biosynthesis, which uses both pathways, is significantly modulated depending on pathway productivity, while Prens are consistently derived from the MEP pathway

    Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid

    Get PDF
    Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid

    Genetic improvement of tomato by targeted control of fruit softening

    Get PDF
    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    The formation and sequestration of nonendogenous ketocarotenoids in transgenic Nicotiana glauca

    Get PDF
    Ketolated and hydroxylated carotenoids are high-value compounds with industrial, food, and feed applications. Chemical synthesis is currently the production method of choice for these compounds, with no amenable plant sources readily available. In this study, the 4,4′ β-oxygenase (crtW) and 3,3′ β-hydroxylase (crtZ) genes from Brevundimonas sp. SD-212 were expressed under constitutive transcriptional control in Nicotiana glauca, which has an emerging potential as a biofuel and biorefining feedstock. The transgenic lines produced significant levels of nonendogenous carotenoids in all tissues. In leaf and flower, the carotenoids (∼0.5% dry weight) included 0.3% and 0.48%, respectively, of nonendogenous ketolated and hydroxylated carotenoids. These were 4-ketolutein, echinenone (and its 3-hydroxy derivatives), canthaxanthin, phoenicoxanthin, 4-ketozeaxanthin, and astaxanthin. Stable, homozygous genotypes expressing both transgenes inherited the chemotype. Subcellular fractionation of vegetative tissues and microscopic analysis revealed the presence of ketocarotenoids in thylakoid membranes, not predominantly in the photosynthetic complexes but in plastoglobules. Despite ketocarotenoid production and changes in cellular ultrastructure, intermediary metabolite levels were not dramatically affected. The study illustrates the utility of Brevundimonas sp. SD-212 CRTZ and CRTW to produce ketocarotenoids in a plant species that is being evaluated as a biorefining feedstock, the adaptation of the plastid to sequester nonendogenous carotenoids, and the robustness of plant metabolism to these changes

    Multilevel interactions between native and ectopic isoprenoid pathways affect global metabolism in rice

    Get PDF
    MVA pathway could be circumvented by express- ing an ectopic plastidial MVA pathway that increases the accumulation of IPP and DMAPP in plastids. We therefore introduced genes encoding the plastid- targeted enzymes HMGS, tHMGR, MK, PMK and MVD and the nuclear-targeted transcription fac- tor WR1 into rice and evaluated the impact of their endosperm-specific expression on (1) endogenous metabolism at the transcriptomic and metabolomic levels, (2) the synthesis of phytohormones, carbohy- drates and fatty acids, and (3) the macroscopic phe- notype including seed morphology. We found that the Abstract Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylal- lyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering. We hypothesized that the strict regulation of the nativeOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, project BIO2014-54426-P) and through the European Union Framework Program DISCO (from DISCOvery to products: a next-generation pipeline for the sustainable generation of high-value plant products, project 613513). LP was supported by a fellowship from MINECO
    corecore