19,304 research outputs found
Analysis of the acoustic cut-off frequency and HIPs in six Kepler stars with stochastically excited pulsations
Gravito-acoustic modes in the Sun and other stars propagate in resonant
cavities with a frequency below a given limit known as the cut-off frequency.
At higher frequencies, waves are no longer trapped in the stellar interior and
become traveller waves. In this article we study six pulsating solar-like stars
at different evolutionary stages observed by the NASA Kepler mission. These
high signal-to-noise targets show a peak structure that extends at very high
frequencies and are good candidates for studying the transition region between
the modes and the interference peaks or pseudo-modes. Following the same
methodology successfully applied on Sun-as-a-star measurements, we uncover the
existence of pseudo-modes in these stars with one or two dominant interference
patterns depending on the evolutionary stage of the star. We also infer their
cut-off frequency as the midpoint between the last eigenmode and the first peak
of the interference patterns. By using ray theory we show that, while the
period of one of the interference pattern is very close to half the large
separation the other, one depends on the time phase of mixed waves, thus
carrying additional information on the stellar structure and evolution.Comment: Accepted for publication in A&A. 14 pages, 28 figure
Pinworms of the red howler monkey (Alouatta seniculus) in Colombia. Gathering the pieces of the pinworm-primate puzzle
Pinworms of primates are believed to be highly host specific parasites, forming co-evolutionary associations with their hosts. In order to assess the strength and reach of such evolutionary links, we need to have a broad understanding of the pinworm diversity associated with primates. Here, we employed an integrative taxonomic approach to assess pinworm diversity in red howler monkeys in Colombia. Molecular and morphological evidence validate the presence of at least four different species of Trypanoxyuris occurring in red howler monkeys: T. minutus, a widely distributed species, and three new species, T. seunimiii n. sp., T. kemuimae n. sp. and T. kotudoi n. sp. The mitochondrial COI gene and the 28S ribosomal gene were used for phylogenetic assessments through Bayesian inference. The three new species were morphologically distinct and formed reciprocally monophyletic lineages. Further molecular lineage subdivision in T. minutus and T. kotudoi n. sp. without morphological correspondence, suggests the potential scenario for the existence of cryptic species. Phylogenetic relationships imply that the different species of Trypanoxyuris occurring in each howler monkey species were acquired through independent colonization events. On-going efforts to uncover pinworm diversity will allow us to test the degree of host specificity and the co-phylogenetic hypothesis, as well as to further unravel the primate-pinworm evolutionary history puzzle
Density of States of Quantum Spin Systems from Isotropic Entanglement
We propose a method which we call "Isotropic Entanglement" (IE), that
predicts the eigenvalue distribution of quantum many body (spin) systems (QMBS)
with generic interactions. We interpolate between two known approximations by
matching fourth moments. Though, such problems can be QMA-complete, our
examples show that IE provides an accurate picture of the spectra well beyond
what one expects from the first four moments alone. We further show that the
interpolation is universal, i.e., independent of the choice of local terms.Comment: 4+ pages, content is as in the published versio
The different dimensions of livelihood impacts of Payments for Environmentals Services (PES) schemes: A systematic review
Through a systematic review of peer-reviewed and grey literature, this paper analyzes evidence of the livelihood impacts of Payments for Environmental Services (PES). Forty-six studies assessed PES livelihood impacts. The assessments presented more positive livelihood impacts than negative ones, focusing on financial benefits. Non-monetary and non-material impacts of PES were largely understudied. Most reviews focused on ES providers, hindering the understanding of broader societal impacts. The review yielded examples where participants lost from their participation or where improvements in one livelihood dimension paralleled deterioration in another. Consequently, we identified key research gaps in: i) understanding the social and cultural impacts of PES, ii) evaluating environmental and economic additionality from improving other ES at the expense of cultural ones, iii) and assessing PES impacts in terms of trade-offs between multiple livelihood dimensions. Moreover, increased knowledge is needed on the impact of PES on changes in household expenditure and choice, and on trade-offs between household income and inequality in ES provider communities. Finally, if PES schemes are implemented to sustainably improve livelihoods, targeting disaggregated populations, understanding equity and social power relations within and between ES providers and users, and better monitoring and evaluation systems that consider locally relevant livelihood dimensions are needed
Exact Matrix Product States for Quantum Hall Wave Functions
We show that the model wave functions used to describe the fractional quantum
Hall effect have exact representations as matrix product states (MPS). These
MPS can be implemented numerically in the orbital basis of both finite and
infinite cylinders, which provides an efficient way of calculating arbitrary
observables. We extend this approach to the charged excitations and numerically
compute their Berry phases. Finally, we present an algorithm for numerically
computing the real-space entanglement spectrum starting from an arbitrary
orbital basis MPS, which allows us to study the scaling properties of the
real-space entanglement spectra on infinite cylinders. The real-space
entanglement spectrum obeys a scaling form dictated by the edge conformal field
theory, allowing us to accurately extract the two entanglement velocities of
the Moore-Read state. In contrast, the orbital space spectrum is observed to
scale according to a complex set of power laws that rule out a similar
collapse.Comment: 10 pages and Appendix, v3 published versio
Matrix Product State and mean field solutions for one-dimensional systems can be found efficiently
We consider the problem of approximating ground states of one-dimensional
quantum systems within the two most common variational ansatzes, namely the
mean field ansatz and Matrix Product States. We show that both for mean field
and for Matrix Product States of fixed bond dimension, the optimal solutions
can be found in a way which is provably efficient (i.e., scales polynomially).
This implies that the corresponding variational methods can be in principle
recast in a way which scales provably polynomially. Moreover, our findings
imply that ground states of one-dimensional commuting Hamiltonians can be found
efficiently.Comment: 5 pages; v2: accepted version, Journal-ref adde
Estimation of the Radio Channel Parameters using the SAGE Algorithm
This paper presents the problem of estimating the parameters of a given number of superimposed signals, as is the case of the received signal in wireless communications. Based on the description of the received signal in the frequency domain, one version of the SAGE (Space-Alternating Generalized Expectation-Maximization) algorithm is presented, allowing the estimation, for each impinging ray, the delay, azimuth, elevation and complex amplitude. Ray retrieval results are presented in synthetic channels, using data generated with the extended Saleh Valenzuela (ESV) model, and also in real channels
Self-synchronized Encryption for Physical Layer in 10Gbps Optical Links
In this work a new self-synchronized encryption method for 10 Gigabit optical links is proposed and developed. Necessary modifications to introduce this kind of encryption in physical layers based on 64b/66b encoding, such as 10GBase-R, have been considered. The proposed scheme encrypts directly the 64b/66b blocks by using a symmetric stream cipher based on an FPE (Format Preserving Encryption) block cipher operating in PSCFB (Pipelined Statistical Cipher Feedback) mode. One of the main novelties in this paper is the security analysis done for this mode. For the first time, an expression for the IND-CPA (Indistinguishability under Chosen-Plaintext Attack) advantage of any adversary over this scheme has been derived. Moreover, it has been concluded that this mode can be considered secure in the same way of traditional modes are. In addition, the overall system has been simulated and implemented in an FPGA (Field Programmable Gate Array). An encrypted optical link has been tested with Ethernet data frames, concluding that it is possible to cipher traffic at this level, getting maximum throughput and hiding traffic pattern from passive eavesdroppers
- …