56,007 research outputs found

    Supersymmetric methods in the traveling variable: inside neurons and at the brain scale

    Get PDF
    We apply the mathematical technique of factorization of differential operators to two different problems. First we review our results related to the supersymmetry of the Montroll kinks moving onto the microtubule walls as well as mentioning the sine-Gordon model for the microtubule nonlinear excitations. Second, we find analytic expressions for a class of one-parameter solutions of a sort of diffusion equation of Bessel type that is obtained by supersymmetry from the homogeneous form of a simple damped wave equations derived in the works of P.A. Robinson and collaborators for the corticothalamic system. We also present a possible interpretation of the diffusion equation in the brain contextComment: 14 pages, 1 figur

    Majorana neutrino oscillations in vacuum

    Full text link
    In the context of a type I seesaw scenario which leads to get light left-handed and heavy right-handed Majorana neutrinos, we obtain expressions for the transition probability densities between two flavor neutrinos in the cases of left-handed and right-handed neutrinos. We obtain these expressions in the context of an approach developed in the canonical formalism of Quantum Field Theory for neutrinos which are considered as superpositions of mass-eigenstate plane waves with specific momenta. The expressions obtained for the left-handed neutrino case after the ultra-relativistic limit is taking lead to the standard probability densities which describe light neutrino oscillations. For the right-handed neutrino case, the expressions describing heavy neutrino oscillations in the non-relativistic limit are different respect to the ones of the standard neutrino oscillations. However, the right-handed neutrino oscillations are phenomenologically restricted as is shown when the propagation of heavy neutrinos is considered as superpositions of mass-eigenstate wave packets.Comment: 25 pages, abstract changed, two sections added, some references adde

    Contractions, Hopf algebra extensions and cov. differential calculus

    Full text link
    We re-examine all the contractions related with the Uq(su(2)){\cal U}_q(su(2)) deformed algebra and study the consequences that the contraction process has for their structure. We also show using Uq(su(2))Γ—U(u(1)){\cal U}_q(su(2))\times{\cal U}(u(1)) as an example that, as in the undeformed case, the contraction may generate Hopf algebra cohomology. We shall show that most of the different Hopf algebra deformations obtained have a bicrossproduct or a cocycle bicrossproduct structure, for which we shall also give their dual `group' versions. The bicovariant differential calculi on the deformed spaces associated with the contracted algebras and the requirements for their existence are examined as well.Comment: TeX file, 25 pages. Macros are include
    • …
    corecore