13 research outputs found

    Cleaner Routes for Friedel-Crafts Acylation

    Get PDF
    Friedel-Crafts acylation is among the most fundamental and useful reactions to yield aromatic ketones but it is one of the less acceptable in terms of unwanted polluting by-products or atom economy because of the overconsumption of catalyst which is used in stoichiometric quantities in the conventional process. This route is nevertheless widely used in the fine chemical industry.In recent years, awareness of the impact of industrial activities on the environment has led chemists to work on new chemical routes, less dangerous and more environmentally friendly.We considered here the acylation of a benzofurane derivative by an acyl chloride, as an intermediary step for a pharmaceutical product. In this study, one of the first alternatives was to replace conventional catalysts (FeCl3 or AlCl3), by reusable solid catalysts. Indeed, a wide variety of new solid catalysts, more efficient and less polluting, has now emerged (zeolites, ion-exchange resins…). In this work, these catalysts were first tested in “conventional” conditions, i.e., using an organic solvent (1,2-dichlorobenzene in our case), to determine the best one, in terms of reactivity, lifetime and reusability. The zeolite Y was found the most appropriate.However, the use of an organic solvent still remains questionable and the use of supercritical carbon dioxide as the solvent was also considered. Its inherent properties include non-flammability, mild critical conditions, tuneable solubility near to the critical point and very low environmental impact. The reaction was operated using a continuous high pressure fixed bed. Results concerning yield and selectivity are presented

    Stoichio-kinetic modeling and optimization of chemical synthesis: Application to the aldolic condensation of furfural on acetone

    Get PDF
    The condensation reaction of furfural (F) on acetone (Ac) gives a high added value product, the 4-(2-furyl)-3-buten-2-one (FAc), used as aroma in alcohol free drinks, ice, candies, gelatines and other products of current life. This synthesis valorises the residues of sugar cane treatment since furfural is obtained by hydrolysis of sugar cane bagasse followed by vapor training extraction. In the face of numerous and complex reactions involved in this synthesis, it is very complicated to define the kinetic laws from exact stoichiometry. A solution allowing to cope the problem consists in identifying an appropriate stoichiometric model. It does not attempt to represent exactly all the reaction mechanisms, but proposes a mathematical support to integrate available knowledge on the transformation. The aim of this work is the determination of stoichiometric and kinetic models of the condensation reaction of furfural on acetone. Concentrations of reagents and products are determined by gas and liquid chromatography. Concentration profiles obtained at different temperatures are used to identify kinetic parameters. The model is then used for the optimization of the production of FAc. The interest of such tool is also shown for the scale up of laboratory reactor to a large scale. The anticipation of the reaction behaviour in large scale is crucial especially when the reactor presents important limitations of thermal exchange capacity

    Improving headspace-solid-phase microextraction of 3-isobutyl-2-methoxypyrazine by experimental design with regard to stable isotope dilution gas chromatography–mass spectrometric analysis of wine

    Get PDF
    To solve problems of sensitivity, repeatability and multi-step extraction related to 3-isobutyl-2-methoxypyrazine (IBMP) determination in wines, a simple method based on the novel combination of solid-phase microextraction and stable isotope dilution assay is presented. Among the parameters that affect this type of extraction, five of them have been optimised since the other parameters have common values or do not require optimisation (e.g. addition of sodium chloride at saturated concentration) and so were fixed. Vial volume, sample volume/vial volume ratio, pH, adsorption time and temperature have been optimised by means of two experimental designs. After extraction, quantification was performed by stable isotope dilution with gas chromatography-tandem mass spectrometry ([]-IBMP as internal standard). The final procedure allowed quantification far below IBMP’s sensory threshold (1 ng l−1 versus 15 ng l−1) with a 4% standard deviation. This method has been applied to experimental Fer servadou wines. Comparison of IBMP contents confirmed the efficiency of some viticultural and enological techniques on the herbaceous flavour decrease, such as prior fermentation maceration at high temperature (70 °C) and the use of a reflective carpet on viticultural soil

    A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation

    Get PDF
    Glycerol electrooxidation has attracted immense attention due to the economic advantage it could add to biodiesel production. One of the significant challenges for the industrial development of glycerol electrooxidation process is the search for a suitable electrocatalyst that is sustainable, cost effective, and tolerant to carbonaceous species, results in high performance, and is capable of replacing the conventional Pt/C catalyst. We review suitable, sustainable, and inexpensive alternative electrocatalysts with enhanced activity, selectivity, and durability, ensuring the economic viability of the glycerol electrooxidation process. The alternatives discussed here include Pd-based, Au-based, Ni-based, and Ag-based catalysts, as well as the combination of two or three of these metals. Also discussed here are the prospective materials that are yet to be explored for glycerol oxidation but are reported to be bifunctional (being capable of both anodic and cathodic reaction). These include heteroatom-doped metal-free electrocatalysts, which are carbon materials doped with one or two heteroatoms (N, B, S, P, F, I, Br, Cl), and heteroatom-doped nonprecious transition metals. Rational design of these materials can produce electrocatalysts with activity comparable to that of Pt/C catalysts. The takeaway from this review is that it provides an insight into further study and engineering applications on the efficient and cost-effective conversion of glycerol to value-added chemicals

    Linseed oil as a novel eco-friendly corrosion inhibitor of carbon steel in 1 M HCl

    Get PDF
    The extraction of linseed oil (LO) was realized by refluxing method. The extracted oil was identified by gas chromatography method coupled with mass spectrometry (GC-MS). In order to contribute to the protection of the environment, one contemplates to try on LO as a green corrosion inhibitor. The corrosion inhibition of LO was studied by weight loss and electrochemical methods. The obtained results showed that the LO is an effective inhibitor of the carbon steel corrosion in 1M HCl solution, the inhibition efficiency increased with concentration to reach 88% at 200ppm. Furthermore, the adsorption of the inhibitor on the surface of metal in 1M HCl solution was found to obey Langmuir’s adsorption isotherm. The influences of temperature were also studied in the range from 298K to 328K. The kinetic and thermodynamic data of activation dissolution process were determined and discussed

    Structure–selectivity relationship of a zirconia-based heterogeneous acid catalyst in the production of green mono- and dioleate product

    Get PDF
    A novel catalytic technique is vital to produce mono- and dioleate (GMO and GDO) from bioglycerol: a renewable resource and by-product of biodiesel. The advantage of this invention is the direct production of GMO and GDO through catalytic approach compared to the conventional method that requires transesterification and distillation processes. In this paper, glycerol esterification with oleic acid using a catalyst was experimented. The process was carried out over a hydrophobic mesoporous zirconia–silica heterogeneous acid catalyst (ZrO2–SiO2–Me&Et–PhSO3H) with three types of sulphated zirconia catalysts (SO42−/ZrO2) to produce high-selectivity GMO and GDO products. The catalytic performance of the hydrophobic ZrO2–SiO2–Me&Et–PhSO3H catalyst was benchmarked with that of SO42−/ZrO2 which was developed from three zirconium precursors. Results showed that the pore volume and hydrophobicity of the designed catalyst greatly could influence the product selectivity, thus enabling smaller substrates GMO and GDO to be dominated in the synthesis. This finding was supported by characterisation data obtained through N2 adsorption–desorption, X-ray diffraction and scanning electron microscopy. In addition, a good correlation was found between pore volume (pore size) and product selectivity. High pore volume catalyst favoured GDO production under identical reaction conditions. Pore volume and size can be used to control product sensitivity. The hydrophobicity of the catalyst was found to improve the initial reaction rate effectively

    Development of a Novel Hydrophobic ZrO2–SiO2 Based Acid Catalyst for Catalytic Esterification of Glycerol with Oleic Acid

    Get PDF
    The inevitably low value of glycerol has led to extensive investigations on glycerol conversion to value-added derivatives. The esterification of glycerol with oleic acid is currently a very important industrial process. In this work, a novel heterogeneous acid catalyst featuring hydrophobic surface is developed on modified ZrO2–SiO2 support as water-tolerant solid acid catalyst is vital for biphasic esterification reactions that produce water. The novel ZrO2–SiO2–Me&Et-PhSO3H catalyst was prepared through silication and surface modification with trimethoxymethylsilane and 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane. This work showed that it is possible to control the acidity and hydrophobicity of the catalyst by tailoring the amount of surface modification agents. It was found that the hydrophobicity of the catalyst decreased as its acidity increased. Furthermore, at constant catalyst acidity, the more hydrophobic catalyst showed a better yield

    Investigating the electrocatalytic oxidation of glycerol on simultaneous nitrogen- and fluorine-doped on activated carbon black composite

    Get PDF
    To develop non-metallic electrocatalyst for glycerol electrooxidation, simultaneous co-doping of nitrogen and fluorine into activated carbon black (ACB) composite was explored to investigate the physical and electrochemical characteristics. The ACB was prepared by mixing activated carbon and carbon black. The N and F were incorporated using aniline and polytetrafluoroethylene as the precursors. The morphologies of the prepared samples were analyzed and the electrochemical behavior, as well as the electrocatalytic performance, was investigated in acid and alkaline environment. Porosity analysis shows that 20% N and F co-doped ACB (ACB-N2F2) reduced the surface area (491.64 m2 g−1) and increased the electroactive surface area, which could contribute to faster mass transport and electron transfer process to enhance the catalytic activity the electrode. The doping defect also reduced the charge transfer resistance, which could increase the spin densities and maximize charge re-distribution to generate more electroactive surface. The electrodes N-doped ACB (ACB-N2) and ACB-N2F2 exhibited

    Catalytic role of solid acid catalysts in glycerol acetylation for the production of bio-additives: a review

    Get PDF
    Bio-additives obtained from the acetylation of biodiesel-derived glycerol have been extensively synthesized because of their nature as value-added products and their contribution to environmental sustainability. Glycerol acetylation with acetic acid produces commercially important fuel additives. Considering that the recovery of individual monoacetin, diacetin (DA), and triacetin (TA) is complicated, many endeavours have enhanced the selectivity and total conversion of glycerol using acetic acid during catalytic acetylation. In this work, we extensively review the catalytic activity of different heterogeneous acid catalysts and their important roles in glycerol acetylation and product selectivity. In addition, the most influential operating conditions to attain high yields of combined DA and TA are achieved by closely examining the process. This review also highlights the prospective market, research gaps, and future direction of catalytic glycerol acetylation

    Synthèse de carbonates organiques à partir de CO2 en présence de métallophthalocyanines (étude expérimentale)

    No full text
    Depuis les années 70, la synthèse de carbonates organiques a rencontré un grand intérêt dans diverses applications de l industrie chimique. Parmi ces composés, le carbonate de diméthyle, qui est à la base de la fabrication de certains polycarbonates, est particulièrement intéressant. C est un excellent solvant, et plus récemment, il s est révélé être un additif potentiel pour les essences grâce à son contenu élevé en oxygène. Encore aujourd hui, au niveau industriel, la synthèse de carbonate de diméthyle est basée sur l utilisation de réactifs dangereux tels que le phosgène ou le monoxyde de carbone. Pour s aligner sur les demandes de la chimie verte, une recherche assidue a été développée afin de trouver une voie de synthèse plus propre mais efficace qui pourrait être appliquée au niveau industriel. Parmi celles-ci, la voie la plus appropriée est la réaction directe du CO2 et du méthanol en présence d un catalyseur capable d activer le dioxyde de carbone. Dans ce travail, l activité des complexes de type métallophthalocyanines a été testée en conditions atmosphériques et sous haute pression et haute température. Les méthodes de spectroscopie infrarouge, UV-visible etRMN ont été mise en oeuvre pour caractériser les intermédiaires réactionnels formés. Les travaux ont démontré que ces complexes métalliques possèdent une capacité d activation du CO2 et du méthanol pour former le carbonate de diméthyle, tout en ayant une activité catalytique encore trop faible pour envisager de développer un procédé industriel. Ce type de complexes a cependant montré une activité satisfaisante pour la synthèse de carbonate de propylène à partir de CO2 et d oxyde de propylène.Since the 1970 s, the synthesis of organic carbonates has been of a strong interest in applications in the chemical industry as an intermediate in the synthesis of polycarbonates, as a solvent and more recently as a possible additive in gasoline due to its high oxygen content. Until now, industrial dimethyl carbonate synthesis has been based on the use of harmful reagents such as phosgene and carbon monoxide. To bring it into line with the requirements of green chemistry, research has been carried out to find a cleaner way of synthesis that could be also applied at an industrial scale. It was found that one of the most suitable chemical routes is the use of carbon dioxide and methanol in the presence of a catalyst that is able to activate the CO2 molecule. In this work, the activity of metallophthalocyanine complexes was tested under atmospheric, as well as high pressure and high temperature conditions. Infrared, UV-visible and RMN spectroscopy has been used to attempt to identify the reaction intermediates. In this work metallophthalocyanine complexes have been shown to activate methanol and CO2 molecules by forming dimethyl carbonate. However, the yields are too low to develop a chemical process at the industrial scale. Nevertheless, this type of complex has shown to be active in the synthesis of propylene carbonate from carbon dioxide and propylene oxide.TOULOUSE-INP (315552154) / SudocSudocFranceF
    corecore