2,805 research outputs found

    Quantum Field Theory with Null-Fronted Metrics

    Full text link
    There is a large class of classical null-fronted metrics in which a free scalar field has an infinite number of conservation laws. In particular, if the scalar field is quantized, the number of particles is conserved. However, with more general null-fronted metrics, field quantization cannot be interpreted in terms of particle creation and annihilation operators, and the physical meaning of the theory becomes obscure.Comment: 11 page

    Quantum mechanics explained

    Get PDF
    The physical motivation for the mathematical formalism of quantum mechanics is made clear and compelling by starting from an obvious fact - essentially, the stability of matter - and inquiring into its preconditions: what does it take to make this fact possible?Comment: 29 pages, 5 figures. v2: revised in response to referee comment

    Non-linear operations in quantum information theory

    Get PDF
    Quantum information theory is used to analize various non-linear operations on quantum states. The universal disentanglement machine is shown to be impossible, and partial (negative) results are obtained in the state-dependent case. The efficiency of the transformation of non-orthogonal states into orthogonal ones is discussed.Comment: 11 pages, LaTeX, 3 figures on separate page

    Pseudoparticle Description of the 1D Hubbard Model Electronic Transport Properties

    Full text link
    We extend the pseudoparticle transport description of the Hubbard chain to all energy scales. In particular we compute the mean value of the electric current transported by any Bethe-ansatz state and the transport masses of the charge carriers. We present numerical results for the optical conductivity of the model at half-filling for values of U/t=3 and 4. We show that these are in good agreement with the pseudoparticle description of the finite-energy transitions involving new pseudoparticle energy bands.Comment: 4 pages, RevTex, one figure (can be obtained upon request from [email protected]). To apper in the Proceedings of the Euroconference on "Correlations in Unconventional Quantum Liquids" in Zeitschrift f\"ur Physik B- Condensed Matter (Dedicated to the memory of Sir Rudolph Peierls

    Wigner's little group and Berry's phase for massless particles

    Full text link
    The ``little group'' for massless particles (namely, the Lorentz transformations Λ\Lambda that leave a null vector invariant) is isomorphic to the Euclidean group E2: translations and rotations in a plane. We show how to obtain explicitly the rotation angle of E2 as a function of Λ\Lambda and we relate that angle to Berry's topological phase. Some particles admit both signs of helicity, and it is then possible to define a reduced density matrix for their polarization. However, that density matrix is physically meaningless, because it has no transformation law under the Lorentz group, even under ordinary rotations.Comment: 4 pages revte

    Multiconfiguration Time-Dependent Hartree-Fock Treatment of Electronic and Nuclear Dynamics in Diatomic Molecules

    Full text link
    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is formulated for treating the coupled electronic and nuclear dynamics of diatomic molecules without the Born- Oppenheimer approximation. The method treats the full dimensionality of the electronic motion, uses no model interactions, and is in principle capable of an exact nonrelativistic description of diatomics in electromagnetic fields. An expansion of the wave function in terms of configurations of orbitals whose dependence on internuclear distance is only that provided by the underlying prolate spheroidal coordinate system is demonstrated to provide the key simplifications of the working equations that allow their practical solution. Photoionization cross sections are also computed from the MCTDHF wave function in calculations using short pulses.Comment: Submitted to Phys Rev

    Generic Bell inequalities for multipartite arbitrary dimensional systems

    Full text link
    We present generic Bell inequalities for multipartite multi-dimensional systems. The inequalities that any local realistic theories must obey are violated by quantum mechanics for even-dimensional multipartite systems. A large set of variants are shown to naturally emerge from the generic Bell inequalities. We discuss particular variants of Bell inequalities, that are violated for all the systems including odd-dimensional systems.Comment: Accepted in Phys. Rev. Let

    Classical interventions in quantum systems. I. The measuring process

    Get PDF
    The measuring process is an external intervention in the dynamics of a quantum system. It involves a unitary interaction of that system with a measuring apparatus, a further interaction of both with an unknown environment causing decoherence, and then the deletion of a subsystem. This description of the measuring process is a substantial generalization of current models in quantum measurement theory. In particular, no ancilla is needed. The final result is represented by a completely positive map of the quantum state ρ\rho (possibly with a change of the dimensions of ρ\rho). A continuous limit of the above process leads to Lindblad's equation for the quantum dynamical semigroup.Comment: Final version, 14 pages LaTe

    Multipartite bound entangled states that violate Bell's inequality

    Get PDF
    We study the relation between distillability of multipartite states and violation of Bell's inequality. We prove that there exist multipartite bound entangled states (i.e. non-separable, non-distillable states) that violate a multipartite Bell inequality. This implies that (i) violation of Bell's inequality is not a sufficient condition for distillability and (ii) some bound entangled states cannot be described by a local hidden variable model.Comment: 4 pages, no figure

    Experimental Demonstration of Optimal Unambiguous State Discrimination

    Get PDF
    We present the first full demonstration of unambiguous state discrimination between non-orthogonal quantum states. Using a novel free space interferometer we have realised the optimum quantum measurement scheme for two non-orthogonal states of light, known as the Ivanovic-Dieks-Peres (IDP) measurement. We have for the first time gained access to all three possible outcomes of this measurement. All aspects of this generalised measurement scheme, including its superiority over a standard von Neumann measurement, have been demonstrated within 1.5% of the IDP predictions
    corecore