22 research outputs found

    Quantum Entropy and Special Relativity

    Get PDF
    We consider a single free spin-1/2 particle. The reduced density matrix for its spin is not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning

    From qubits to black holes: entropy, entanglement and all that

    Full text link
    Entropy plays a crucial role in characterization of information and entanglement, but it is not a scalar quantity and for many systems it is different for different relativistic observers. Loop quantum gravity predicts the Bekenstein-Hawking term for black hole entropy and logarithmic correction to it. The latter originates in the entanglement between the pieces of spin networks that describe black hole horizon. Entanglement between gravity and matter may restore the unitarity in the black hole evaporation process. If the collapsing matter is assumed to be initially in a pure state, then entropy of the Hawking radiation is exactly the created entanglement between matter and gravity.Comment: Honorable Mention in the 2005 Gravity Research Foundation Essay Competitio

    Entanglement, discord and the power of quantum computation

    Full text link
    We show that the ability to create entanglement is necessary for execution of bipartite quantum gates even when they are applied to unentangled states and create no entanglement. Starting with a simple example we demonstrate that to execute such a gate bi-locally the local operations and classical communications (LOCC) should be supplemented by shared entanglement. Our results point to the changes in quantum discord, which is a measure of quantumness of correlations even in the absence of entanglement, as the indicator of failure of a LOCC implementation of the gates.Comment: Published version. More results are adde

    Entropy, holography and the second law

    Full text link
    The geometric entropy in quantum field theory is not a Lorentz scalar and has no invariant meaning, while the black hole entropy is invariant. Renormalization of entropy and energy for reduced density matrices may lead to the negative free energy even if no boundary conditions are imposed. Presence of particles outside the horizon of a uniformly accelerated observer prevents the description in terms of a single Unruh temperature.Comment: 4 pages, RevTex 4, 1 eps figur

    Non-linear operations in quantum information theory

    Get PDF
    Quantum information theory is used to analize various non-linear operations on quantum states. The universal disentanglement machine is shown to be impossible, and partial (negative) results are obtained in the state-dependent case. The efficiency of the transformation of non-orthogonal states into orthogonal ones is discussed.Comment: 11 pages, LaTeX, 3 figures on separate page

    Entanglement from longitudinal and scalar photons

    Full text link
    The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and scalar photons in addition to the usual transverse photons. It is shown here that the exchange of longitudinal and scalar photons can produce entanglement between two distant atoms or harmonic oscillators. The form of the entangled states produced in this way is very different from that obtained in the Coulomb gauge, where the longitudinal and scalar photons do not exist. A generalized gauge transformation is used to show that all physically observable effects are the same in the two gauges, despite the differences in the form of the entangled states. An approach of this kind may be useful for a covariant description of the dynamics of quantum information processing.Comment: 12 pages, 1 figur

    Realization of Optimal Disentanglement by Teleportation via Separable Channel

    Full text link
    We discuss here the best disentanglement processes of states of two two-level systems which belong to (i) the universal set, (ii) the set in which the states of one party lie on a single great circle of the Bloch sphere, and (iii) the set in which the states of one party commute with each other, by teleporting the states of one party (on which the disentangling machine is acting) through three particular type of separable channels, each of which is a mixture of Bell states. In the general scenario, by teleporting one party's state of an arbitrary entangled state of two two-level parties through some mixture of Bell states, we have shown that this entangled state can be made separable by using a physically realizable map V~\tilde{V}, acting on one party's states, if V~(I)=I,V~(σj)=λjσj\tilde{V} (I) = I, \tilde{V} ({\sigma}_j) = {\lambda}_j {\sigma}_j, where λj0{\lambda}_j \ge 0 (for j=1,2,3j = 1, 2, 3), and λ1+λ2+λ31{\lambda}_1 + {\lambda}_2 + {\lambda}_3 \le 1.Comment: 20 pages Late

    Nonquantum Gravity

    Full text link
    One of the great challenges for 21st century physics is to quantize gravity and generate a theory that will unify gravity with the other three fundamental forces of nature. This paper takes the (heretical) point of view that gravity may be an inherently classical, i.e., nonquantum, phenomenon and investigates the experimental consequences of such a model. At present there is no experimental evidence of the quantum nature of gravity and the liklihood of definitive tests in the future is not at all certain. If gravity is, indeed, a nonquantum phenomenon, then it is suggested that evidence will most likely appear at mesoscopic scales.Comment: essentially the same as the version that appears in Foundations of Physics, 39, 331 (2009
    corecore