88,555 research outputs found

    On the anomalous mass defect of strange stars in the Field Correlator Method

    Full text link
    We investigate general aspects of the mass defects of strange stars in the context of the Field Correlator Method, without magnetic field. The main parameters of the model that enter the corresponding nonperturbative equation of state of the quark gluon plasma are the gluon condensate G2G_2 and the large distance static QQΛ‰Q{\bar Q} potential V1V_1. We calculate mass defects of stellar configurations in the central density range 11<log⁑ρc<1811<\log\rho_c<18. In general, the mass defects are strongly dependent on the model parameters. For a large range of values of G2G_2 and V1V_1, we obtain anomalous mass defects with magnitudes around 1053 10^{53}\,erg\,, of the same order of the observed energies of gamma-ray bursts and neutrino emissions in SN1987A, and of the theoretically predicted energies of the quark-novae explosions.Comment: 24 pages, 6 figure

    Strange stars properties calculated in the framework of the Field Correlator Method

    Full text link
    We calculate the strange star properties in the framework of the Field Correlator Method. We find that for the values of the gluon condensate G2=0.006β€…β€ŠGeV4G_2=0.006\;{\rm GeV}^4 and G2=0.0068β€…β€ŠGeV4G_2=0.0068\;{\rm GeV}^4, which give a critical temperature Tc∼170β€…β€ŠMeVT_c\sim170\;{\rm MeV} at ΞΌc=0\mu_c=0, the sequences of strange stars are compatible with some of the semi-empirical mass-radius relations and data obtained from astrophysical observations.Comment: 26 pages, 10 figure

    Second harmonic spectroscopy to optically detect valley polarization in 2D materials

    Full text link
    Valley polarization (VP), an induced imbalance in the populations of a multi-valley electronic system, allows emission of second harmonic (SH) light even in centrosymmetric crystals such as graphene. Whereas in systems such as MoS2\mathrm{_2} or BN this adds to their intrinsic quadratic response, SH generation in a multi-valley inversion-symmetric crystal can provide a direct measure of valley polarization. By computing the nonlinear response and characterizing theoretically the respective SH as a function of polarization, temperature, electron density, and degree of VP, we demonstrate the possibility of disentangling and individually quantifying the intrinsic and valley contributions to the SH. A specific experimental setup is proposed to obtain direct quantitative information about the degree of VP and allow its remote mapping. This approach could prove useful for direct, contactless, real-space monitoring of valley injection and other applications of valley transport and valleytronics.Comment: Updating with published version, including typesetting corrections to eqs 3 and 4; 7 pages, 5 figure

    Gravitation and the Local Symmetry Group of Spacetime

    Full text link
    According to general relativity, the interaction of a matter field with gravitation requires the simultaneous introduction of a tetrad field, which is a field related to translations, and a spin connection, which is a field assuming values in the Lie algebra of the Lorentz group. These two fields, however, are not independent. By analyzing the constraint between them, it is concluded that the relevant local symmetry group behind general relativity is provided by the Lorentz group. Furthermore, it is shown that the minimal coupling prescription obtained from the Lorentz covariant derivative coincides exactly with the usual coupling prescription of general relativity. Instead of the tetrad, therefore, the spin connection is to be considered as the fundamental field representing gravitation.Comment: 8 pages, no figures. Some signs and references corrected; version to appear in Int. J. Theor. Phy
    • …
    corecore