41,229 research outputs found

    Energy in an Expanding Universe in the Teleparallel Geometry

    Get PDF
    The main purpose of this paper is to explicitly verify the consistency of the energy-momentum and angular momentum tensor of the gravitational field established in the Hamiltonian structure of the Teleparallel Equivalent of General Relativity (TEGR). In order to reach these objectives, we obtained the total energy and angular momentum (matter plus gravitational field) of the closed universe of the Friedmann-Lemaitre-Robertson-Walker (FLRW). The result is compared with those obtained from the pseudotensors of Einstein and Landau-Lifshitz. We also applied the field equations (TEGR) in an expanding FLRW universe. Considering the stress energy-momentum tensor for a perfect fluid, we found a teleparallel equivalent of Friedmann equations of General Relativity (GR).Comment: 19 pages, no figures. Revised in view of Referee's comments. Version to appear in the Brazilian Journal of Physic

    Angular Momentum of the BTZ Black Hole in the Teleparallel Geometry

    Full text link
    We carry out the Hamiltonian formulation of the three- dimensional gravitational teleparallelism without imposing the time gauge condition, by rigorously performing the Legendre transform. Definition of the gravitational angular momentum arises by suitably interpreting the integral form of the constraint equation Gama^ik=0 as an angular momentum equation. The gravitational angular momentum is evaluated for the gravitational field of a rotating BTZ black hole.Comment: 17 pages, no figures, v2: some misprints corrected, Ref.s added, Eq.s revised, submitted to General Relativity and Gravitatio

    Kinematics of a Spacetime with an Infinite Cosmological Constant

    Full text link
    A solution of the sourceless Einstein's equation with an infinite value for the cosmological constant \Lambda is discussed by using Inonu-Wigner contractions of the de Sitter groups and spaces. When \Lambda --> infinity, spacetime becomes a four-dimensional cone, dual to Minkowski space by a spacetime inversion. This inversion relates the four-cone vertex to the infinity of Minkowski space, and the four-cone infinity to the Minkowski light-cone. The non-relativistic limit c --> infinity is further considered, the kinematical group in this case being a modified Galilei group in which the space and time translations are replaced by the non-relativistic limits of the corresponding proper conformal transformations. This group presents the same abstract Lie algebra as the Galilei group and can be named the conformal Galilei group. The results may be of interest to the early Universe Cosmology.Comment: RevTex, 7 pages, no figures. Presentation changes, including a new Title. Version to appear in Found. Phys. Let

    Vortices in the presence of a nonmagnetic atom impurity in 2D XY ferromagnets

    Full text link
    Using a model of nonmagnetic impurity potential, we have examined the behavior of planar vortex solutions in the classical two-dimensional XY ferromagnets in the presence of a spin vacancy localized out of the vortex core. Our results show that a spinless atom impurity gives rise to an effective potential that repels the vortex structure.Comment: 6 pages, 2 figures, RevTex

    Boussinesq Solitary-Wave as a Multiple-Time Solution of the Korteweg-de Vries Hierarchy

    Full text link
    We study the Boussinesq equation from the point of view of a multiple-time reductive perturbation method. As a consequence of the elimination of the secular producing terms through the use of the Korteweg--de Vries hierarchy, we show that the solitary--wave of the Boussinesq equation is a solitary--wave satisfying simultaneously all equations of the Korteweg--de Vries hierarchy, each one in an appropriate slow time variable.Comment: 12 pages, RevTex (to appear in J. Math Phys.
    • 

    corecore