32 research outputs found
Permeation of oxygen through high purity, large grain silver
The permeation of high purity, large grain Ag membranes by oxygen has been studied over the temperature range 400 to 800 C. The permeability was found to be quite linear and repeatable, but the magnitude was 3.2 times smaller than that determined by past research. Since previous investigators studied substantially less pure Ag and conducted experiments within much poorer vacuum environments (which indicates that their grain boundary density was much greater), the data presented here suggest oxygen transport through the membrane is primarily by grain boundary diffusion. The diffusivity measurements were found to exhibit two distinct linear regions, one above and one below a critical temperature of 630 C. The high-temperature data have an activation energy (11.1 kcal/mole) similar to that reported by others, but the low-temperature data have a higher activation energy (15.3 kcal/mole), which can be explained by impurity trapping in the grain boundaries. Vacuum desorption of the oxygen-saturated Ag was found to occur at a threshold of 630 C, which is consistent with the onset of increased mobility within the grain boundaries
Electron stimulated desorption of atomic oxygen from silver
The electron stimulated desorption (ESD) of neutral oxygen atoms from polycrystalline silver and of oxygen ions from Ag(110) has been studied. Polycrystalline Ag charged with (16)O2 and (18)O2 and bombarded by low-energy electrons (approx 100 eV) under ultrahigh vacuum (UHV) conditions emitted O atom flux levels of 1 x 10 to the 12th power/sq cm/s at a Ag temperature of 300 C. The flux was detected with a quadrupole mass spectrometer operating in the appearance potential mode. The neutral cross section at about 100 C was determined to be 7 x 10 to the -19 sq cm. Ancillary experiments conducted in a UHV chamber equipped with a cylindrical mirror analyzer and rigged for ion energy distribution and ion angular distribution were used to study O ions desorbed from Ag(110). Two primary O(+) energies of 2.4 and 5.4 eV were detected from the Ag(110) after having been dosed with 2500 L of (16)O2. It also appears that in both experiments there was strong evidence for directionality of the emitted flux. The results of this study serve as a proof of concept for the development of a laboratory atomic oxygen beam generator that simulates the gas flux environment experienced by orbiting vehicles